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Abstract

This report describes the procedure of capturing spectral images of human portraits. The

spectral reflectances of human faces, including hair, eyes and lips, are analyzed by

principal component analysis (PCA). Reconstructed spectral images based on the first

three and six principal components are calculated. The results indicate that three basis

functions are accurate enough to estimate the spectral reflectance of human faces. Due to

the image quality limitation of the camera, spectral images based on six basis functions

involve relatively large noise. The derived spectral images can be applied to color-

imaging system design and analysis.

Introduction

Most of the traditional color-imaging and reproduction systems functioned in a

trichromatic fashion with three response functions, resulting in three color signals, i.e.,

RGB color values. These approaches could reproduce color quite capably.  However,

there are several problems inherent in these approaches, which will cause large color

shifts. This becomes apparent in the image capture and reproduction of metameric

objects[1]. The only way to solve these problems is to attempt to produce spectral matches

between the original objects and their reproductions. The key idea is to replace the world

of red, green and blue with the world of wavelength[2]. The study of spectral imaging of

pictorial scenes in this report is motivated in part by the previous multi-spectral imaging-

research of artwork[3, 4, 5, 6, 7]
 and realistic spectral image synthesis [1]  in the Munsell

Color Science Laboratory, and spectral skin color image research by Imai et al.[8,]. They
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provide formulation and method involving spectral imaging system and spectral image

capture. They also provide a detail study of spectral image application in human skin and

computer graphics. Previous research [8, 9], based on 108 reflectance spectra of skin in

faces of  54 Japanese women, showed that the spectral reflectance of human skin, can be

represented by three basis functions using PCA. Therefore, the spectral reflectance of

each pixel of the captured image could be estimated from the values of three color

channels and the spectral radiance of the illuminant used.  However, a high quality

spectral human portrait needs some specific consideration of its own. Generally, previous

spectral portrait image researches [8, 9] performed the system calibration based on the

painting samples which were the reproductions of the reflectance spectra of skin directly

measured. These approaches required very accurate reproductions of skin at a fairly early

stage to avoid the errors passed through all the following procedures. Moreover, those

reproduced spectral paintings excluded the spectra of the lips, eyes and hairs which we

consider are important parts of the human portrait information. On the other hand, for

spectral reflectance of the human face, different measurement geometry will give

different spectral information.  In the real world, the spectral reflectance of human face

captured by the camera or detector is a mixture of diffuse reflection, specular reflections

and interreflections. Therefore, we believe that the spectral reflectance of human face

based on direct measurement, i. e., putting spectrophotometer on the face to measure the

spectral reflectance, could not contain the geometric spectral information related to the

certain objects under certain lighting conditions. Consequently, the basis functions

derived from principal component analysis, based on the spectra which are directly

measured from painting targets or real objects, and their further application are not

precise. Other researchers [10] calibrated their system and determined basis functions

based on Munsell chips, paint chips and natural objects. We consider those methods

could neither provide sufficient geometric information of the real spectral reflectance of

the face nor represent them precisely. This research will perform efforts to calibrate the

imaging system and capture spectral images of human portrait based on the spectral data

directly recorded from the real objects with certain lighting and camera conditions. The

detail of the experiment procedure will be provided. The calibrated imaging system will

have the ability to represent either the face skin or the spectra of lips, eyes and hairs as
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well. The spectral reflectance measured above will be analyzed by PCA. Based on the

results of PCA, both three wide band and six wide band spectral images will be estimated

respectively.  The detail of the estimation procedure will be provided. The results of the

reconstructed spectral images for display based on sRGB model will be shown and

discussed.

Model of Spectral Image

Multi-spectral image acquisition can be modeled using matrix-vector notation [11]. The

illumination spectral power distribution can be expressed as

                                                     

  

S =

s1 0

s2

O
0 sn

 

 

 
 
 
 
 

 

 

 
 
 
 
 

, (1)

where the index indicates the set of n wavelengths over the visible range. The object

spectral reflectance can be expressed as r = [r1, r2, ..., rn]
T where T means matrix

transpose. The transmittance characteristics of the m filters (in our case m =3, 6

respectively) will be the following form:
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The spectral sensitivity of the detector, i.e., camera, will be given as:
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Then the captured image is given by
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where I is the digital counts of the pixel. The spectral reflectance of each pixel,

theoretically, can be obtained using pseudoinverse from Eq.(4). However, in our case,

there are only six digital counts for each pixel, the spectral reflectance obtained using

pseudoinverse method here may yield large uncertainty and give large error. The

advantage here, as authors understand [12], is convenient to do simulation and check the

results. Therefore, PCA method will be performed as an alternative choice. We will

discuss this in detail below. The color vector can be obtained as C = A I =(X,Y,Z)T

where X, Y, Z are the CIE tristimulus values and A is a transfer matrix. The CIELab L*,

a*, b* are given by the non-linear transformation Ψ, where Ψ(X,Y,Z) = L*, a*, b*.

The spectral reflectance R(x, y, λ), where x, y denote the coordinates of the image pixel,

can be estimated using spectral reconstruction methods based on statistical analyses,

PCA. It can also be obtained by using interpolation techniques such as cubic spline done

by  Burns [11]. Burns and Berns[13] indicated that the method of PCA would give more

accurate results than interpolation methods.

The PCA method is a mathematical technique which describes a multivariate set of

measured data using basis functions, or called eigenvectors. The basis functions are

formulated using specific linear combinations of the original variables. The basis

functions are uncorrelated and are computed in decreasing order of importance; the first

function accounts for as much as possible of the variation in the original data, the second

function accounts for the second largest portion of the variation in the original data, and

so on. The PCA method attempts to construct a small set of basis functions which

summarize the original data, thereby reducing the dimensionality of the original data. In

practice, though the accuracy of spectral reconstruction depends on the number of basis

functions used, 5 to 8 basis functions are sufficient for accurate spectral reconstruction
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used in artwork[14], while 3 basis functions are satisfied in spectral reproduction of human

skin[8].  Details of the PCA can be found in many textbooks[15, 16].

Applying the PCA method to the measured spectral reflectance of the objects, the number

of basis functions for accurate spectral reproduction can be determined based on the

cumulative proportion rates of the basis functions.  Suppose six basis functions are

sufficient to represent the spectral reflectance of human face, including skin, hairs, eyes

and lips. The spectral reflectance of human face can then be expressed as a linear

combination of the basis functions as follows: where r  is the average spectral

reflectance, ui are the basis functions, or eigenvectors, and αi are the eigenvalues. The

tristimulus values X, Y, Z can be calculated by Eq. (6):

X =K ⋅ E( ) ⋅ x( )
=380

780

∑ ⋅ r( ),

Y = K ⋅ E( ) ⋅ y( )
= 380

780

∑ ⋅r( ), (6)

Z =K ⋅ E( ) ⋅ z( )
=380

780

∑ ⋅ r( ),

where r(λ) is the spectral reflectance, E(λ) is the spectral radiance of the illumination,

)(,)(,)( zyx  are the color matching functions, and K is a normalized constant. Eq.

(6) can be converted to matrix notation as follows:

  

X = KeT xr,

Y = KeT yr, (7)

Z = KeT zr,

where T represent the transpose, the matrix e and r are matrix notations of E(λ) and r(λ)

respectively. And the matrices z,y,x  are color-matching function represented as follows:
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From Eq. (5), Eq. (7) can be written as

Y = KeT y r +(u1u2 u3 u4 u5 u6)
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Z = KeT z r +(u1 u2 u3 u4 u5 u6)
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Eq. (11) ~(13) then can be rewritten as follows:

X =KeT x r +KeT(xu1 xu2 xu3 xu4 xu5 xu6 )
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We can treat the first terms of Eqs. (14)~(16) as the contribution of the averaged spectral

reflectance to the tristimulus values, and the second terms as the contribution of six basis

functions or eigenvectors.  Therefore, we have the following equation:
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where ZYX ,, are the averaged tristimulus values and Xi, Yi, Zi(i = 1,2,...,6) are the

tristimulus values corresponding to the six basis functions of spectral reflectance of face.

However, to determine the six eigenvalues, three more equations need to be provided.

Therefore, a filter is employed, either in front of the lighting source or detector, to yield

another three equations as follows:
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where T(λ) is spectral transmittance of the filter, Xf, Yf, and Zf are corresponding

tristimulus values. Using the similar procedure as above, we can derive the final

equations with matrix form as follows:
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Combining Eqs. (17) and Eqs. (19), we have six independent equations with six unknown

eigenvalues. The matrix form of these six equations is shown as follows:

The eigenvalues are then give by:
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After determine the six eigenvalues, the spectral reflectance of human face can be

obtained by basis functions using Eq. (5).

Now the question remaining is how we can connect the camera signals to tristimulus

values. Most digital cameras have nonlinear photometric response that the relationship

between the digital numbers in the image file and the scene reflectance which produced

the digits is nonlinear. This relationship is known as the optoelectronic conversion

function. The nonlinearity is employed to minimize visual artifacts caused by optical and

digital limitations. To connect those digits to the tristimulus values, the digits should be

first linearized based on the optoelectronic conversion function. The common methods

are fit procedure using one-dimensional look-up table involving interpolation or a

polynomial function and etc.

The next step is to transform linearized camera digits to tristimulus values. Since most

digital cameras do not have spectral sensitivities that are linearly related to color-

matching functions, a simple 3x3 transformation will yield considerable error. A common

empirical technique recommended by Berns [17] is to include relative cumbersome square

and covariance terms, or even higher order terms. The possible transform equation then

could be written as
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where R, G and B are linearized digits of camera, YX ˆ,ˆ and Ẑ are estimated tristimulus

values, M is the transform matrix. The transform matrix M can be calculated from least

square regression known as pseudoinverse method based on calibrated targets. The

authors call this procedure as 2-step method that it first relates the digits to the tristimulus

values using Eq. (22), then determine the eigenvalues using Eq. (21).  However, least
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square regression of M only minimizes the sum of square tristimulus errors; it has no

guarantee to either provide minimum color difference or most accurate spectral fit.

Therefore, to achieve the best accuracy of the final results, some necessary optimization

should be performed to minimize the goal object which is of most important or interest.

For example, the M matrix can be determined with the minimum average color difference

or, in spectral image research, with the minimum root mean square error between

estimated and measured spectra.  It is worth noting that it works best to use different

transform matrix for different sets of filters.

 An alternative method is to establish the relationship between linearized digits and

eigenvalues directly. This method is called a direct method. The form of digits chosen

can be based on the Eqs. (21) and (22).  The accuracy of 2-step method and direct method

depends on certain situations; no one always works better than the other.

Imaging System Calibration

The portrait studio digital camera we used for this research is SONY DKC-ST5 Digital

Photo Camera. It is a high-quality electronic photography system, using a three-chip

high-resolution CCD camera with total 1,400,000 pixels. Its A/D conversion uses a 10-bit

lookup table for each R, G and B channel, which makes flexible color gradation

representation. The output image is 24-bit, 8-bit for each channel, with TIFF format.

During the experiment, the camera automatic white balance was disabled by setting the

temperature to 3200K for tungsten lighting we used. For signal-noise considering, we set

the shutter speed to 1/1000 with the exposure of ISO160. We then employed a high

quality white reference, barium sulfate coated paper, under the lighting and camera

condition we would use for real image capturing, to adjust the camera setting so that the

image of white reference would give maximum digit values without saturation and satisfy

the white balance. The lighting system contained two lighting heads (Scanlite Digital

1000, Elinchrom) with Halogen Photo Optic lamps (FEL/1000w, 120V). The spectral

radiance of the lighting on the position where real objects would be taken for pictures

was measured by Spectroradiometer, SpectraScan 704 (PR-704), Photo Research Inc.

The measured spectral radiance is given in Fig. 1 as follows:
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Some necessary measurement and calibration should be performed before any serious

experiment could be completed.

The first pre-experiment measurement was to measure the spectral sensitivity response of

the camera. Two methods could be employed: monochromator method and interference

filter method. Imai [7] showed that monochromator method is a better choice.

In monochromator method, a light source Module Model 740-20 (serial 8553) in

connection with double monochromators, part of the Optical Radiation Measurement

System Model 740A (serial 185268-5) from Optronic Laboratories Inc., would be used in

this measurement. Hewlett Packard Hamsom 6274A DC Power Supply (0 – 60V 0 –

15A) is set to provide stable 0.06A current to the light. This light source with

monochromator provided narrow-band illumination at the 10nm exit slit, over a range

380 – 780nm at 2nm intervals. The surface of the digital camera lens was kept to a proper

distance from the exit slit of the monochromator. The images of the monochromator light

were taken in a dark environment over the range of 380 – 780nm, in intervals of 2nm.

Each image will be truncated in the same position centered in the light spot producing a

proper, i.e., 106x33 pixels, 2-D image. The averaged digital counts for each channel over

wavelength range then could be obtained. Next, the camera was replaced by a calibrated

photo-detector (Optronic Laboratories Inc., OL730-5C Silicon Photo detector SIN:1152

Hex Key with calibration certification data: May 30, 1998) whose spectral responsivity

was given and the source spectral irradiance was measured over the same range used
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above by Optronic Laboratories Inc., Radiometer 730A (serial: 850190). Based on the

average digital counts and the measured irradiance the spectral sensitivity of R, G, and B

channels of the digital camera could be obtained. The relative spectral sensitivity of the

camera is shown in the figure 2. The spectral sensitivity of the camera indicates that the

wavelength response range of the camera is from 380nm to 700nm. Therefore, just as

many researchers used, we will choose the wavelength range of 400nm to 700nm in our

measurement. Since the PR704 can measure the spectra with the range from 380nm to

780nm with 2nm interval, all our spectral data will use interval of 2nm. The color

matching function (CIE 1931, 2° observer), and other standard illumination spectra will

then be interpolated 400nm to 700nm in interval of 2nm. It should be indicated that the

spectral sensitivity of camera shown here is not exactly the same as we used for our real

experiment. It was based on the setting after performing the white balance which was

related to the lighting spectra shown in Fig. 1. Therefore, in Fig. 2, it is reasonable to

understand that the blue channel is enhanced.

With a wide-band filter attached to this camera, the imaging system will provide a

multispectral image with total six wide-bands. The wide-band filter we selected for this

research is 202 half C.T blue, Professional Lighting Filters, Bogen. Its spectral

transmittance is shown in figure 3 which was measured using a Macbeth Color-Eye 7000,

spectrophotometer.
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The criterion here is to choose a filter with some variation in spectral transmittance and

the transmittance should not be too small in any wavelength[18].  Mathematically, the

filter should provide three linear independent equations. Considering the fact that,

generally, the blue channel image of CCD camera has relative low image-noise ratio, it is

better to choose a filter with relatively high spectral transmittance in the short

wavelengths. Figure 3 shows that the spectra have more absorption in long wavelengths

than that in short wavelengths.

The next basic measurement was the optoelectronic conversion function (OECF ) of the

camera. The camera setting and imaging system was the same as we would perform for

real imaging capturing. The OECF was determined by imaging gray scales, Kodak

GrayScale, Q14, with the addition of a high quality white paper and a complete dark.

Each gray scale was taken one image containing three R, G, B channel images. The

images of gray scales should be all taken at the same position to avoid the non-uniform of

the illumination involved. The camera system has a function to create a grid box with any

size and any position shown on the screen of an attached monitor. Using this function,

during measurement, each gray scale was easily placed at the same position shown by

grid box which was located at the center of the image frame. For each gray scale, the

digital count of image for each channel was a mean of the pixel values truncated at the

center of the image with the pixel size of 31x41. The composite OECF of the camera is

shown in figure 4.

Fig. 3 Spectral Transmittance of Wide-band F
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The OECF curves are non-linear. After comparing with many fit methods, we find that

three 1-D look-up tables will be a best choice to relate the digital counts to reflectance

factors. As we mentioned in the previous section, the linearized R, G, B will be

calculated based on OECF using these three 1-D look-up tables.

One difficult part of this research was to measure the spectral reflectance and its

corresponding digital count (mean value) at the same position. We designed a system

which includes an optical mirror and PR-704.  We selected the circular aperture, setting

of 0.5 degree, in PR-704 for the spectral measurement as illustrated in figure 5.

    Fig. 5.  Circular Aperture in PR-704

Optical radiation being measured passed through the aperture and then reached the

detector for the light measurement. The mirror was attached to a slide mounted on carrier

which could move along the table bench. This system was calibrated so that the pixel

Fig. 4 Optoelectronic Conversion Functions of Came
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positions in the image contributed to the light measurement in PR-704 were known. The

distance between the object to PR-704 ( distance from object to mirror plus distance from

mirror to PR-704) was selected in such a way that the uncertainty of calibrated pixel area

was less than 2.5% on the assumption that the object surface would move forth or back

around the calibrated object position within 2cm. The distance we selected was about

1.6m. We could select a longer distance for accuracy purpose. However, the area covered

by the aperture of PR-704 would be too large and the spectra measured would be

averaged too much. The calibrated surface area of the object was an ellipse of height of

about 0.73cm and width of about 0.75cm. During the experiment, we first took picture for

the object, then moved the mirror to the calibrated position and made spectral

measurement of the same object at the same position. The pixels of the image contributed

to the spectral measurement could be truncated based on the calibrated pixel area and

their mean digital count then could be obtained.

To measure the spectral reflectance of the mirror  under the experimental condition, we

first placed the white reference paper on the calibrated position where real objects would

be taken for pictures and spectral measurement. Next, we measured the spectral radiance

of that position with the mirror and PR-704 located at their calibrated positions. Then, we

placed the PR-704 perpendicularly to the white reference paper, without mirror, with the

same distance as that from PR-704 to mirror plus mirror to white paper at the previous

step.  Finally, we measured the spectral radiance at the same calibrated position where

real objects would be taken for spectral measurement. Knowing the spectral reflectance

of the white reference paper, the spectral reflectance of the mirror, therefore, could be

easily calculated and is shown in figure 6.
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The picture of the main parts of imaging system is shown in figure 7.

Fig. 7 Picture main parts of imaging system

Experiment

It is worth indicating here that, for simple calculation purpose, we modified Eq. (5)

avoiding the mean spectra term for all of our following calculations. The modified

equation is given as follows:

           r = U ,        (23)

Fig. 6 Spectral Reflectance of Mirror
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where r is an n×1 matrix of spectral reflectance utilizing n-point wavelength, U is an

n×m matrix of m basis functions, and  is an m×1 matrix of eigenvalues.

We mentioned earlier that the number of bands or image channels used is dependent on

the coverage percentage of the basis functions calculated from PCA. To get the first hand

information about human face we applied spectrophotometer, Gretag SpectroScan, to

directly measure spectral reflectance of the faces of four people, two from East Asia and

two from America (Caucasian). This measurement obtained total 232 spectral reflectance

of face including face skin, lips, eyes and hairs. Due to difficult measuring the spectral

reflectance of eyes, eye data was based only on two people with successful measurement.

The first three basis functions from PCA are shown in figure 8.

The coverage percentage of the first three basis functions is 99.80% while this number is

99.99 for the first six basis functions. This shows that the three basis functions can

provide acceptably accurate results. As mentioned in the previous section, the spectral

reflectance measured with real lighting and camera condition may involve different effect

that will give some different results. Therefore, we decided to perform three wide band

(without filter) and six wide band (with filter) spectral image experiments respectively.

A total of 16 people, nine Asian and seven American (Caucasian), participated in this

experiment. For each person, we would select 16 different positions on the face for our

Fig. 8 First Three Basis Functions Of Faces in Direct Measurement
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calibration purpose. We only restricted that those positions should include three on hairs,

two on eyes, one on lips and the rest were on skin; their exact positions were not limited.

The camera, spectroradiometer PR-704, and lighting in our imaging system were all

calibrated and their relative positions could not be changed during the experiment.

Therefore, we created a grid box, as mentioned earlier, on the image frame coincident

with the position covered by aperture of PR-704 in spectral measurement. The objects

were asked to adjust their chair up and down, left and right, until the position of interest

fallen into the grid box shown on the monitor. They were asked to put their heads against

the holder in the back and keep still during each measurement. For each position, one

image without filter and one image with filter were taken, and the spectral measurement

was then performed. The most difficult part was on the position of eyes that object was

asked to keep eyes open, without blink, for about 30 seconds. For all objects, total 256

(16 x16) sets of measurement data were collected. We only employed 240 sets of data,

from 15 people for system calibration and modeling. The rest of the data sets, 16 sets,

from one person would be used for verification purposes.

Spectral Measurement Results

Based on the measured spectral radiance of the lighting, spectral reflectance of white

paper and spectral reflectance of mirror, the spectral reflectance of the object could be

obtained. Using the PCA method, the basis functions and their coverage percentages were

calculated. The first six basis functions are shown in figure 9. The accumulative coverage

percentages (ACP) for the first six basis functions are shown in table 1.

Fig. 9-(1) First Three Basis Functions of Face Spe
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Fig. 9-(1) shows similar shape forms with that of Fig. 8.  However, they show different

shapes than those reported by Imai [8] whose results were only based on face skin. These

differences are what we expected. Interesting thing is that, to achieve the 99.5% of the

accumulative coverage percentage, our results only need first two basis functions while it

required first three basis functions in Imai’s work.  This implies that our results have a

more efficient representation considering that our data included more parts of spectral

measurement. On the other hand, table 1 indicates that three basis functions can provide

sufficient accuracy to describe the spectra in our experiment. Therefore, based on Eq.

(20),  image from regular three bands, i.e., R, G and B three channels, can be used to

derive the spectral image with sufficient accuracy. However, due to the non-linearity of

the OECF of the camera and non-linear relationship between camera spectral sensitivity

and color matching functions, the procedure of transferring digital counts of the image to

corresponding spectral reflectance will yield some extra error. Thus, in the following

transform matrix determination, we will try both three channel and six channel spectral

images. For comparison purpose, we also performed the PCA to face spectral reflectance

of American people and Asian people separately. The first three basis functions for both

groups of people are shown in figure 10 as follows:

Table 1. Accumulative coverage percentage of 1~ 6 basis functions.
basis functions 1 2 3 4 5 6

ACP(%) 98.15 99.55 99.92 99.97 99.98 99.99

Fig. 10. First 3 Basis Functions of American Objects and Asian 

Objects
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It is interesting to see that both groups show the very similar shapes of their basis

functions.

Selection of Transform Matrix

As indicated in Eq. (5) ~ Eq. (22), we can use 2-step method and direct method to

determine the transform matrix connecting linearized digital counts to tristimulus values

or eigenvalues which can then be used to reconstruct the spectral reflectance. But first,

the digital counts of the image pixels which contributed to the spectral reflectance

measured need to be linearized based on OECF we obtained in basic measurement.

(1) Linearized R, G and B values.

We first transferred the original images, both without and with filter, to the reflectance

factor space, pixel by pixel, based on the OECF. White correction was then required to be

performed due to non-uniform illumination fallen on the objects. Compared to the depth

dimensions of the objects, the distance from object to the camera could be regarded as

infinity. Therefore, it was reasonable to assume here that the objects could be treated as

flat objects. Thus, normal flat field procedure could be applied.

Then we truncated the pixels, which contributed to the spectral measurement, from the

linearized image. The mean digital counts of those truncated pixels of red, green and blue

channels were linearized R, G and B digital counts. For simple purpose, in the following

sections we will use R, G and B notations to represent the linearized digital counts of red,

green, and blue channel images, without using filter, respectively. The linearized digital

counts from images using filter will be represented as Rf, Gf and Bf corresponding to red,

green and blue channels respectively. The linearized digital counts were values between 0

to 1. The next step was to determine the transform matrix that could transfer the

linearized digital counts to the eigvenvalues. Using the eigvenvalues and basis functions,

the spectral reflectance could be constructed.

(2) Transform Matrix

For simple demonstration, we here define matrix D as follows:

D = D1 D2 D3 I[ ],
D1 = R G B[ ], D2 = R ⋅ G R ⋅ B G ⋅B R2 G2 B2[ ], (24)

D3 = R ⋅ G ⋅ B R2 ⋅G G ⋅ B B2 ⋅ R R3 G3 B3[ ].
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where, Rn,1, Gn,1, and Bn,1 are linearized digital count matrices with n = 240 as the

number of data sets,  In,1  is the unit matrix for offset. Similar expressions can be written

for matrix Df as the case using filter. Therefore, D and Df  both contain 17 terms. We will

use the expression Q=[D(n1: n2)] to represent that new matrix Q, a sub-matrix of D,

containing column n1 to n2 of D. It is indicated here that we only used 238 real data sets

and two data sets with very large calculation errors were rejected as measurement error.

As indicated in previous section, the least square regression using Eq. (22) may not give

optimal spectral fit. Therefore, to determine the optimized transform matrix, we first, in 2

step method, applied Eq. (22) to obtain the least square result of transform matrix, M.

Then using this M as an initial matrix, we performed optimization procedure to minimize

the error of spectral estimation. The optimization criterion here is to minimize the root

mean square of error between measured and estimated spectral reflectance. On the other

hand, in direct method, the transform matrix is based on the spectra directly; matrix

obtained from least square regression in direct method has already satisfied the

minimizing of root mean square of error between spectra, measured and estimated. To

demonstrate the spectral fit, the indices of metamerism were calculated using

illuminations D50 and A. This calculation was employed Fairman’s [17] metameric

correction using parameric decomposition.

(i). Transform Matrix Using 3 Basis Function

We first tried the 2-step method using modified equation based on Eq. (22) with different

terms of linearized digital counts. The modified equation is

XYZ = M ⋅ Q , 25( )
where XYZ was an n×3 matrix of tristimulus values, Q was an n×m sub-matrix of D, and

M was an m×3 transform matrix. We tried 7 terms, 11 terms and 17 terms of D  as shown

in follows:

      

7terms : Q = D( 1 : 6 ) D(17)[ ]
11term : Q = D(1:10) D(17)[ ] (26)

17term : Q = D

The transform matrix, M, based on least square regression can be expressed as follows:

M = XYZ ⋅ QT ⋅ (Q ⋅QT )−1 , (27)
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where QT is the transpose of Q. The results of regression and optimization are shown in

table 2 as follows:

(a) 7 Terms Regression (b) 7 Terms Checking

Without Optimization
corr = 0.9955

With Optimization
corr = 0.9957

Without Optimization
Corr = 0.9968

With Optimization
Corr = 0.9971

rms meta-index ∆Elab rms meta-index ∆Elab Rms meta-index ∆Elab rms meta-index ∆Elab

mean 0.0110 0.83 1.89 0.0108 0.93 2.12 0.0125 0.62 1.55 0.0118 0.70 1.76

std. 0.0100 0.85 1.61 0.0098 1.01 1.85 0.0064 0.36 0.98 0.0066 0.40 0.98

max 0.0900 6.99 9.62 0.0908 8.06 10.64 0.0232 1.34 4.45 0.024 1.50 4.68

min 0.0016 0.03 0.11 0.0019 0.05 0.04 0.0032 0.11 0.40 0.0029 0.07 0.37

(c) 11 Terms Regression (d) 11 Terms Checking

Without Optimization
Corr = 0.9958

With Optimization
Corr = 0.9959

Without Optimization
Corr = 0.9965

With Optimization
Corr = 0.9969

rms meta-index ∆Elab rms meta-index ∆Elab rms meta-index ∆Elab rms meta-index ∆Elab

mean 0.0110 0.76 1.73 0.0106 0.84 1.93 0.0130 0.61 1.55 0.0119 0.66 1.75

std. 0.0095 0.76 1.49 0.0093 0.86 1.60 0.0066 0.32 1.00 0.0068 0.40 1.05

max 0.0840 6.5 9.13 0.0837 7.38 9.94 0.0238 1.44 4.58 0.0233 1.63 4.91

min 0.0012 0.062 0.25 0.0010 0.066 0.15 0.0040 0.14 0.21 0.0037 0.20 0.30

(e) 17 Terms Regression (f) 17 Terms Checking

Without Optimization
Corr = 0.9959

With Optimization
Corr = 0.9961

Without Optimization
Corr = 0.9959

With Optimization
Corr = 0.9965

rms meta-index ∆Elab rms meta-index ∆Elab rms meta-index ∆Elab rms meta-index ∆Elab

mean 0.0107 0.67 1.54 0.0104 0.75 1.74 0.0143 0.74 1.80 0.0132 0.71 1.79

std. 0.0094 0.62 1.34 0.0092 0.7 1.43 0.0072 0.39 0.82 0.0074 0.49 0.96

max 0.0820 0.54 7.66 0.0815 5.15 8.31 0.0255 1.92 4.08 0.0249 2.10 4.35

min 0.0010 0.054 0.12 0.0013 0.037 0.17 0.0040 0.25 0.64 0.0034 0.14 0.50

    Table 2. Results in transform matrix determination using 3 basis functions with 2-step method.

where regression results were based on the data sets determining the transform matrix,

results of checking were based on check data sets as mentioned early that were not

involved in determining the transform matrix, rms values were root mean square error of

spectra, meta-index were indices of metamerism, ∆Elab were mean color difference,

using CIELab, of the spectra, measured and estimated, using illumination D50, std. were

standard deviations, and Corr were correlation values between spectra measured and

estimated. The correlation and rms values in table 2 prove that the optimization did

improve the spectral fit. However, the optimized transform matrix did not provide more

accurate color reconstruction, except 17 terms for checking spectra, based on illuminant

D50 and A.
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The histograms of color difference between measured and estimated, using and without

using optimization, for 7 and 17 term digital counts are shown in figure 11.

Histograms in Fig. 11 obviously shows that estimation without using optimization

provided better color results. This implied that, to achieve more accurate color

reproduction with certain illumination, it may be worth doing optimization to minimize

the color difference. Table 2 and Fig. 11 also indicate that the overall reconstruction of

color and spectra were more accurate when more terms of digital counts were used in Eq.

(24). But this was not all true for checking data sets.  The final selection of the transform

matrix would also depend on the reconstructed results of the spectral image. We will

discuss this in detail in the following section.
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In a  color system it is very important to know the direction of color error. Therefore,

vector plots of a*b* results, measured and estimated with optimization, of the checking

data sets are shown in figure 12.

(1)

(2)

Fig. 12. Vector plot of a*b*.

The end of a tail indicates the a*b* position of the measured spectral reflectance.

The arrowhead indicates the a*b* position of the estimated spectral reflectance.

(1) Using 7 terms of digital counts. (2) Using 17 terms of digital counts.
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Fig. 12 shows that, in some of the samples, high order transform matrix provided  the

better color accuracy while other samples provided better results with low order

transform matrix.  The vector plot also indicates that the arrows did not point toward the

neutral axis (a*=b*=0). There was no obvious system error trend in regression using both

7 terms and 17 terms of Q.

We can also find the transform matrix using direct method. The equation for regression

can be written as follows:

                               E = Q ⋅ M, (28)

where E is an n×3 eigenvalue matrix obtained from PCA method, Q is an n×m matrix of

linearized digital counts with m terms, and M is an m×3 transform matrix. Therefore, M

can be determined using least square method as Eq. (29):

       M = (Q ⋅ QT )−1 ⋅ QT ⋅ E (29)

The results using 7 and 17 terms of Q are shown in table 3. Just for the purpose of saving

pages, we do not show the results of using 11 terms of Q here.

(a). 7 Terms Regression (b). 7 Terms Checking

Without Optimization
Corr = 0.9957

With Optimization Without Optimization
Corr = 0.9971

With Optimization

rms meta-index Elab rms meta-index Elab rms meta-index Elab rms meta-index Elab

Mea
n

0.0108 0.93 2.12 0.0108 0.93 2.12 0.0120 0.70 1.76 0.0120 0.70 1.76

std. 0.0098 1.01 1.84 0.0098 1.01 1.84 0.0066 0.40 0.98 0.0066 0.40 0.98

max 0.0910 8.01 10.7 0.0910 8.01 10.67 0.0240 1.50 4.68 0.0240 1.50 4.68

min 0.0019 0.041 0.05 0.0019 0.041 0.05 0.0029 0.07 0.37 0.0029 0.07 0.37

(c). 17 Terms Regression (d). 17 Terms Checking

Without Optimization
Corr = 0.9961

With Optimization Without Optimization
Corr = 0.9962

With Optimization

rms meta-index Elab rms meta-index Elab rms meta-index Elab rms meta-index Elab

mea
n

0.0104 0.76 1.75 0.0104 0.76 1.75 0.0137 0.78 1.89 0.0137 0.78 1.89

std. 0.0092 0.69 1.41 0.0092 0.69 1.41 0.0075 0.57 1.07 0.0075 0.57 1.07

max 0.0800 5.09 8.07 0.0800 5.09 8.07 0.0250 2.38 4.73 0.0250 2.38 4.73

min 0.0010 0.013 0.17 0.0010 0.013 0.17 0.0034 0.17 0.52 0.0034 0.17 0.52

Table 3. Results of transform matrix regression with direct method using 3 basis functions

Table 3 shows that the direct method will give relatively larger error of regression results

compared to that in 2-step method. This is because the eigenvalues estimated from PCA

involved some error.  The mean color difference, using D50, between spectra measured
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and spectra reconstructed based on Eq. (5) using 3 basis functions was 0.09 with standard

deviation of 0.06. Table 3 also shows that the regression results based on least square

regression in Eq. (29) are the same as that based on minimizing the root mean square of

spectra. The corresponding histograms of color difference between measured and

estimated spectra are shown in figure 13. The vector plots of a*b* results of the checking

data sets are shown in figure 14.

(1) (2)

Fig. 14. Vector plots of a*b*.

The arrow notation is the same as in Fig. 12. (1). Using 7 terms; (2) Using 17 Terms.

The histogram and table 3 here also shows that the estimation of the overall color was

better using higher order transform matrix. However, this is not true for checking data

sets. The vector plots in Fig. 14 show that there were no obvious systematic error trends.

(ii). Transform Matrix Using 6 Basis Functions

Fig. 13. Histogram of DeltELab Using Transform Matrix from Direct M
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We first tried 2-step method, but the results were too bad to be accepted. This may be due

to the fact that the digital counts obtained from using filter were of relative low signal-to-

noise ratio; relatively larger noises were involved in image using filter. Also, the

relationships between tristimulus values and linearized digits without and with using

filter were not the same. The latter may be more complicated than the former. Therefore,

we here only show the results using direct method.  Though equations used here are the

same as Eqs. (28) and (29), some modifications have to be done to meet the application

of 6 basis functions. E is now an n×6 eigenvalue matrix corresponding to 6 basis

functions, and M is an m×6 transform matrix, Q is still an n×m matrix of linearized

digital counts with m terms, but it need to include the digital counts from images using

filter. We here only show 7 and 27 terms of Q which are redefined as follows:
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The results are shown in table 4.

(a). 7 Terms Regression
(b). 7 Terms Checking

Without Optimization
Corr = 0.9960

With Optimization Without Optimization
Corr = 0.9963

With Optimization

rms meta-index Elab rms meta-index Elab rms meta-index Elab rms meta-index Elab

mea
n

0.0100 0.75 1.71 0.0100 0.75 1.71 0.0130 0.66 1.53 0.0130 0.66 1.53

std. 0.0094 0.73 1.45 0.0094 0.73 1.45 0.0082 0.27 0.84 0.0082 0.27 0.84

max 0.0800 5.37 9.03 0.0800 5.37 9.03 0.0280 1.14 3.49 0.0280 1.14 3.49

(c). 17 Terms Regression (d). 17 Terms Checking

Without Optimization
Corr = 0.9968

With Optimization Without Optimization
Corr = 0.9963

With Optimization

rms meta-index Elab rms meta-index Elab rms meta-index Elab rms meta-index Elab

mea
n

0.0091 0.60 1.39 0.0091 0.60 1.39 0.0125 0.67 1.74 0.0125 0.67 1.74

std. 0.0087 0.56 1.20 0.0087 0.56 1.20 0.0083 0.31 0.77 0.0083 0.31 0.77

max 0.0810 4.02 7.54 0.0810 4.02 7.54 0.0296 0.26 2.99 0.0296 0.26 2.99

min 0.0006 0.07 0.17 0.0006 0.07 0.17 0.0052 0.26 0.77 0.0052 0.26 0.77

    Table 4. Results of Transform Matrix Regression with direct method using 6 Basis Function

Table 4 shows that regression using 7 terms of Q in 6 basis function application could

provide more accurate results than that using 17 terms or 11 terms in 3 basis function

application. However, the selection of transform matrix will also depend on the overall

effect of reconstruction of spectral image. The histogram of color difference related to
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regression using 7 terms of Q is shown in figure 15.  The corresponding vector plot of

a*b* of the checking data sets is shown in figure 16.

Fig. 16. Vector plot of a*b* using 6 basis functions

We have demonstrated the methods to determine the transform matrix. However, the

matrices obtained above were based on limited number of measured samples. Different

transform matrices based on different method, or based on same methods but using

different terms of digital counts will have different flexibility to predict the overall

estimation of spectral image. Therefore, it is worth performing reproduction of whole

spectral image using different methods with different transform matrices obtained to test

their overall accuracy and flexibility.

Fig. 15. Histogram of DeltE Using 6 Basis Functions 
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Reproduction of Spectral Image for Display

Applying the transform matrices obtained above, the spectral images, using either 3 or 6

basis functions, can be estimated, pixel by pixel, from the original R, G and B channel

images. Each pixel of spectral image contains the eigenvalues which can be used to

reconstruct the whole spectral reflectance, of this pixel, using Eq. (23).  Therefore, once

the illuminant spectra and observer are given, the tristimulus values of each pixel can be

determined. Applying some color models, those tristimulus values will be transferred to

digital counts of display device, i. e., monitor, for display. More complete and complex

models can be found in the book written by Fairchild [20]. We selected relatively simple

color models and straightforward procedure to achieve this. We will describe the

procedure briefly as follows. All those transforms were processed pixel by pixel. When

using 6 basis functions, the image registration procedure was required to be performed to

two images obtained with and without using the filter before any transform could be

performed.

We assumed that object was illuminated by illuminant D50 and the observer was 1931

standard observer. We also assumed that the display had a white point equal to the

chromaticities of illuminant D65.  The display environment had illumination close to

D65.  Therefore, we first applied the Bradford[21] chromatic adaptation transform to

transfer the tristimulus values from illuminant D50 to illuminant D65. Then we used the

sRGB[22] model to convert the tristimulus values, in illuminant D65, to display R, G and

B values. Finally, we applied CRT characterization model [23] to transform the R, G and B

values to digital counts which are values of 0~255. Those digital counts are final,

reconstructed image values for display. Some mapping process may need to keep the

transferred values within the device profiles. For more accurate display of reconstructed

spectral image, the CRT need to be calibrated based on its colorimetric

characterization[24].

By making a comparison between images displayed and real objects, we found the results

as follows:

(1). When using three basis functions, either 2-step or direct method, the transform

matrices with 17 terms were more flexible and would provide more accurate color

reproduction than low order transform matrix did, especially the highlight in the eyes,
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dark background and hairs. The matrices also predicted the colors of details very well.

Moreover, the matrices could also predict colors of other materials, such as glasses,

clothes, very well. It was not obviously that the transform matrix with 17 terms, using

direct method, would yield little bit color shift, to blue, in the highlight of eyes.

Meanwhile, transform matrix with 7 terms could not extrapolate colors very well; it failed

to predict the highlight in the eyes. Compared to the reproduced image using transform

matrix with 17 terms, reproduced images with 7 term transform matrix were looked little

bit blurred. Considering the image noise, it was shown, though not obviously, that higher

order transform matrix would yield little bit more image noise. This effect was also

reported by Burns [25].  We then did a trial experiment by adding data sets of six gray

targets of the Macbeth Color Checker into the original data sets to re-determine the

transform matrix with 7 terms using 2-step method. The basis functions used were still

the same as before. The purpose here was to enhance the flexibility of the transform

matrix.  The resulted display of reconstruction of spectral image was improved,

especially the highlight in the eyes. The results of transform matrix regression added gray

scale data sets are shown in table 5 as follows.

(a). 7 Terms Regression with Gray Scales (b). 7 Terms Checking

Without Optimization
Corr = 0.9944

With Optimization
Corr = 0.9950

Without Optimization
corr = 0.9964

With Optimization
corr = 0.9968

rms meta-index Elab rms meta-index Elab rms meta-index Elab rms Meta-index Elab

Mea
n

0.0120 0.87 1.9 0.0117 0.99 2.17 0.0130 0.62 1.59 0.0125 0.68 1.8

std. 0.0126 0.88 1.58 0.0116 1.08 1.85 0.0062 0.28 0.89 0.0063 0.29 0.95

max 0.1100 7.01 9.57 0.0930 8.21 10.71 0.0250 1.16 4.08 0.0230 1.37 4.54

min 0.0020 0.04 0.18 0.0024 0.03 0.18 0.0035 0.14 0.39 0.0037 0.17 0.44

Table 5.  Results of transform matrix regression added six gray scale data sets.

Compared to the results in Table 2 with the same 7 terms of transform matrix, the

accuracy of adding six gray scales was not affected very much. Therefore, to make low

order transform matrix, i.e., 7 terms,  more flexible, it is worth adding some data sets of

gray scale targets. Nevertheless, in this research, high order transform matrices, though

may yield relatively little bit more image noise, have benefit for more accuracy of color

reproduction.

(3). When using 6 basis functions, the displayed image showed, obviously, that there

were more image noises involved, especially in the image using higher order transform
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matrix. Those image noises were mainly come from the original image using filter that

caused relative low signal-noise ratio. This also implied that the image quality of the

camera was not good enough for accurate multi-spectral image research. In addition, the

effect of high order transform matrix on image noise was very obviously using 6 basis

functions. However, it also showed that transform matrix with 7 terms could predict the

color very well, either the highlight in the eyes, dark background, or color details in the

face.  Some samples of reconstructed spectral images for display are shown in figure 17.

The printer is not calibrated.

Fig.17-(1). Reconstructed spectral images for displayed. Transform matrices were based on 3 basis functions, using 2-

step method. The left images were calculated using 7 terms of Q, only face data sets were involved in determining the

transform matrix. The middle images were calculated using 7 terms of Q, face data sets and six gray scale data sets

were involved in determining the transform matrix. The right images were calculated using 17 terms of Q, and only

face data sets were involved in determining the transform matrix.
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Fig. 17-(2) Reconstructed spectral images for displayed. Transform matrices were based on 3 basis

functions, using direct method. The left images were calculated using 7 terms of Q, only face data sets were

involved in determining the transform matrix. The middle images were calculated using 7 terms of Q, using

face data sets and six gray scale data sets in determining the transform matrix. The right images were

calculated using 17 terms of Q, and only face data sets were involved in determining the transform matrix.
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Fig. 17-(2) Reconstructed spectral images for displayed. Transform matrix was based on 6 basis functions,

using direct method, 7 terms of Q and face data sets only.
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Conclusion

A spectral imaging system calibrated directly from human objects has been

accomplished. Based on PCA results of spectral reflectance of human face, including face

skin, eyes, lips and hairs, three band and six band spectral images of human portraits have

been successfully obtained. High order, 17 terms, transform matrices will provide more

accurate, three band, spectral image with acceptable image noise. However, for six-band

spectral image, transform matrix with low order of 7 terms will give most acceptable

results. Due to the limit of image quality of the camera used, the 6-band spectral image

did not meet the quality we originally expected. To obtain more accurate, multi-spectral

image, a camera with high quality of image-noise and spectral sensitivities very close to

color-matching functions is required. The obtained spectral image can be applied to

color-imaging system design and analysis.
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