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Abstract
Spectral reproduction techniques have many advantages over the traditional methods in terms of robustness
to any arbitrary illuminant and observer but they require much more disk space for storage. Few image
compression techniques which take advantage the specific nature of spectral images have yet to be
explored.  Spectral images have higher degrees of redundancy among their multiple channels than do RGB
images. It is possible through carefully constructed methods to reduce the redundancy in the spectral and
spatial dimensions without considerably affecting the accuracy of the spectral reflectance estimations.
Approaches which reduce spatial and spectral sampling rates and precision demands without injuring the
reconstruction process are considered. Techniques which include an arithmetic coding step may prove to be
promising.

1. Introduction

The inherent metameric aspects of the traditional graphic
arts image capture approach of photographing an object
and then scanning the photograph has adversely affects the
image quality of color reproduction.  While it is possible
to produce pleasant pictures, large color distortions can
result during the image recording and display processes
using conventional means.  These problems become
critical when imaging artwork for archiving and
reproduction purposes. It is well known that the only way
to assure a color match for all observers and across
changes in illumination is to achieve a spectral match.
Recent research has investigated this image acquisition
paradigm.1-14 To achieve a spectral match, spectral
properties of a scene are modeled, the scene is captured
using a multi-channel device and the acquired multi-
channel image representation is processed to derive a
spectral description of the original scene. Since this
involves imaging with more than the traditional three
channels, problems arise with respect to processing time
and storage. Clearly, some spectral image compression
should be considered. Multispectral image compression
has been emerging as an important field of study.15

Various methods can be exercised to reduce the
level of redundancy and noise within and between the
spectral channels.  This can be performed in a lossless
fashion or trade-offs may be made between accuracy and
spectral image size. It is possible to classify the
redundancy as three types: spatial, spectral and precision
dimension redundancies. Images can be compressed in the
spectral dimension by reducing the spectral sampling rate.
In the precision dimension, it is possible to decrease the
number of channels and bit depth used in spectral
reconstruction. In this paper, we investigate the influence
on colorimetric and spectral accuracy of the number of
spectral channels, discussing bit depth and sampling rate.
We also discuss some possible ways to perform spatial
multi-spectral compression.

2. Spectral and precision dimensions of
the spectral imaging acquisition
In multi-spectral acquisition we basically increase the
sampling increment above the traditional three channels.
The goal is to capture images in an equivalent fashion to
using a spectrophotometer at each pixel sampling the
visible spectrum at a constant bandpass and wavelength
interval. This is in contrast to the traditional three channel



approach which is conceptually like sampling each pixel
with a densitometer or, at best, a colorimeter. The most
straightforward way to capture spectral images is using
spectrophotometry. Although spectrophotometer accuracy
requirements have not been defined by the Commission
Internationale de l'E´clairage (CIE),16 tristimulus errors are
assumed to be negligible using a 5 nm wavelength
increment and bandpass. Ideally, one would want to
sample every 5 nm with a 5 nm triangular bandpass
throughout the visible spectrum. This corresponds to 61
channels. Obviously, it is necessary to reduce the number
of channels. One should be able to decrease the sampling
increment without a significant loss of spectral
information because of the absorption characteristics of
both man-made and natural colorants. Spectral analyses of
colored stimuli using linear modeling techniques typically
result in less than ten eigenvectors.17-18 For example, we
measured the spectral reflectances of the GretagMacbeth
Color Checker rendition chart and two set of painted
patches. One of the painted patches consisted of 218
patches generated by mixtures of six acrylic paints. The
other painted target consisted of oil painting, that we call
Ross target (painted by Ross Merrill, a conservator
working at the National Gallery of Art, Washington,
D.C.). This target was created using 68 pigments
representing blues, greens, yellows, reds, earth colors,
browns and radiant colors that are among the most
frequently used by artists. The measured reflectances were
used to perform eigenvector analysis. Table I shows the
cumulative contribution rate in function of the number of
eigenvectors used in the spectral estimation. Table II
shows the dependence of colorimetric and spectral accuracy
of the spectral estimation on the number of eigenvectors
used in the reconstruction.

Table  I .  Cumulative contribution of the eigenvectors in
reflectance space.

Cumulative Contribution (%)Number of

eigenvectors
GretagMacbeth

ColorChecker

Painted

patches

Acrylic

Ross Target

3 98.34 98.50 97.28

6 99.80 99.83 99.61

9 99.97 99.98 99.93

12 100.00 100.00 99.99

Since we used 6 colorants for the acrylic patches
it is expected that 6 eigenvectors would be sufficient for
the spectral reproduction of these patches. However, this
spectral estimation also had a very good accuracy for the
Ross target that used 68 different oil paints. From Tables I
and II it is possible to conclude that Six basis vectors
seem to be sufficient for an accurate spectral reconstruction
of artwork.

Thus one should be able to greatly reduce the number
of channels from 61. Considerable research has been
performed in determining the minimum number of
channels needed as well as spectral analysis for optimal
filter design,1,14 and how the multichannel information is
used for spectral estimation. Issues include colorimetric
accuracy, spectral accuracy, and noise propagation. For
example, there is research at the Munsell Color Science
Laboratory which has used a typical monochrome digital
camera in conjunction with a set of available interference
filters.2 Other projects have worked with a wide-band
approach based on trichromatic cameras in conjunction
with absorption filters.5 Both methods are based on a
priori spectral analysis of samples.

Table II .  Influence of the number of eigenvectors in
reflectance space used in the spectral reconstruction on the
colorimetric and spectral error. E*94 calculated for D50 and

the 2° observer.
GretagMacbeth

ColorChecker

Acrylic

painted

patches

Ross TargetNumber

of eigen

vectors

Mean

E*94

rms

error

Mean

E*94

rms

error

Mean

E*94

rms

error

3 3.1 0.032 4.1 0.027 3.1 0.042

6 0.3 0.013 0.4 0.009 0.7 0.017

9 0.2 0.007 0.1 0.004 0.2 0.019

12 0.002 0.002 0.01 0.001 0.04 0.012

In terms of equations, a set of spectral
reflectances, r, is measured and then the corresponding set
of eigenvectors, e, is calculated by principal component
analysis. Then, the set of eigenvalues, , corresponding to
the eigenvectors, e, is calculated using the spectral
reflectances, r . A relationship between eigenvalues and
digital counts, C  obtained using trichromatic camera and
absorption filters can be established by the equation

A CT[CCT ] 1
 (1)

where T denotes transpose matrix.
The matrix A  can be used to calculate the

eigenvalues, , from digital counts to reconstruct the
spectral reflectance. This calculated matrix is used for
subsequent spectral reconstruction from the camera
signals. Therefore, we just need to store the original
multi-channel images, the eigenvectors (obtained by a
priori analysis) and the transformation matrix. If the
estimated reflectance has 31 channels and the captured
multi-spectral image has 6 channels, the stored image has
approximately one fifth of the size of the full spectral
image. The sampling rate can also be decreased to generate
a spectral image with less channels. However, it is
important to notice that decreasing dramatically the
sampling rate can compromise the spectral accuracy of the
estimated image. Most colors signals are sufficiently



bandlimited to allow sampling at 10nm for imaging
applications.19

The number of available bits also has a large effect on
accuracy. Artwork viewers are sensitive to changes in bit-
depth for color images20 and a 10 bit quantization has been
found to yield acceptable results.

3.  Spatial dimension of the spectral
imaging acquisition
In terms of spatial resolution compression, we devised an
image fusion method4,21 shown in Figure 1. This method
combines high spatial resolution lightness image L*(x,y)
(where x, y are the coordinates of the high spatial
resolution image) with low spatial resolution multi-
spectral image. From the low spatial resolution channels
it is possible to derive a transformation from digital
signals to reflectance R’(x’,y’,λ) (where R’ denotes low
spatial resolution reflectance and x’,y’ are the coordinates
of the low spatial resolution image, λ is the wavelength).
From R’(x’,y’,λ) it is possible to derive L*a*b* (x’, y’)
that will be combined with lightness image L*(x,y) in
order to give the CIELAB values for the high spatial
resolution image L*a*b*(x,y,λ). Other researchers also
realized the potentialities of this approach.22

The estimation of high-resolution spectral
reflectance R(x,y,λ) from low-resolution reflectance
R(x’,y’,λ) is based on the Wyszecki hypothesis that any
stimulus can be decomposed into a fundamental stimulus
(with tristimulus values equal to the stimulus) and a
metameric black (with tristimulus values equal to zero)
whose mathematical technique, known as Matrix R, was
developed by Cohen.23 The metameric black from R(x’,y’)
will be fused with the fundamental stimulus from
L*a*b*(x,y) resulting in a high-resolution spectral image
R(x,y,λ), and the same techniques used to combine
CIELAB images will be used to merge spectral
information. This method can decrease the storage space
since the spatial resolution of multi-channel can be
decreased and the lightness image will keep the fine details
of the image.

4. Spectral Image Compression
The previous sections showed evidences that multi-spectral
images have a high degree of redundancy in spatial,
spectral and precision dimensions. Figure 2 shows the
flowchart of the possible studies involving multi-spectral
compression.

We believe that it is possible to devise a multi-
spectral image compression method using arithmetic
coding as entropic coding as shown in Figure 3.24-25

The arithmetic coding allows dynamic
reconfigurability and the probability function to be
included in the coding. The code is generated from the
eigenvector coefficients.

Low Spatial
resolution
Spectral Reflectance
Image    R'(x', y', 

Low spatial
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Image  a*b*(x', y')
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Figure 1 . High spatial resolution image reflectance
reconstruction using image fusion.

It is important to consider the influence of
reducing redundancies in spectral, spatial and precision
dimensions on the overall image quality. Therefore,
psychophysical experiments should be performed in the
future to evaluate the compressed images. At the same
time spectral image quality metrics should be derived other
than color difference equations and spectral reflectance root
mean square error. Hopefully the derived quality metrics
will correlate well with the psychophysical experiments.

     Multispectral Acquisition and
  spectral reconstruction methods

     Variables:
Spectral  dimension  (Sampling)
Spatial    dimension  (Image fusion)
Precision dimension  (Number channels, bit depth)

Evaluate Image
Quality

Psychophysical
Experiments

Image Quality
Metrics

Entropy
Coding

Database
Analysis

Spectral
Encoding

Multiple
Images
(movie)

Figure 2 . Flowchart of multi-spectral compression
research possibilities.
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Figure 3.  Arithmetic coding for spectral images.
Other fields of study that are closely related to the

spectral image compression are the database analysis and
spectral encoding. Since spectral images are generated, an



efficient way to store, search, process and display should
be considered. This also implies that the format of the
spectral image (spectral encoding) also needs to be
addressed.

5. Conclusion
We have presented many aspects that can contribute to the
redundancies of spectral images in the spectral, spatial and
precision dimensions. Dynamic range, sampling rate,
number of channels used for spectral image estimation and
spatial resolution can be used to decrease the size of the
images but they also affect the quality of the spectral
image. These redundancies can be explored to derive a
compression technique for spectral images. A compression
method based on arithmetic coding is proposed for spectral
images. This method takes in account the entropic
information of the eigenvector coefficients to compress
spectral images.
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