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ABSTRACT

The traditional techniques of image capture, scanning, proofing, and separating do not take advantage of colorimetry and
spectrophotometry. For critical color-matching applications such as catalog sales, art-book reproductions, and computer-aided
design, typical images, although pleasing, are unacceptable with respect to color accuracy. The limitations that lead to these
errors have a well-defined theoretical basis and are a result of current hardware and software. This has led us to a re-
examination of the traditional graphic reproduction paradigm. A research and development program has begun that will
alleviate the theoretical limitations associated with traditional techniques. There are four main phases: 1) Multi-spectral image
capture, 2) Spectral-based separation and printing algorithm development, 3) Implementation on press, and 4) Systems
integration with data and image archives. This paper describes this new paradigm, summarizes recent research results, and
considers implementation opportunities.

Keywords: colorimetry, spectrophotometry, multi-spectral image, multi-ink separation, metamerism, high-spatial
resolution, color quality, graphic reproduction, spectral-based printing, principal-component analysis.

1. LIMITATIONS OF CONVENTIONAL GRAPHIC REPRODUCTION

Conventional graphic reproduction involves the concatenation of two reproduction processes, photography and printing. The
photographic process, as an input device, is inherently noncolorimetric. It is impractical to achieve spectral sensitivities with
the required large spectral overlap because photographic products consist of a "tripak" where the three layers are stacked one on
top of another.1 Furthermore, the photometric responses of film are nonlinear.2 As a consequence, large color distortions can
result during the image recording process. The variance in match equality due to the metamerism can be large, resulting in a
dramatic reduction in color quality. This can be easily demonstrated by making a photographic reproduction of a metameric
pair (a pair of specimens that match to a color-normal observer but have different spectral properties as a result of using
different colorants during their manufacture).

The second stage in conventional graphic reproduction is scanning and image editing. The editing can correct the
inherent limitations in color photography to some extent. Although scanning often results in additional color distortions,
many methods3,4 have been published to produce highly accurate scanning of photographic media. It is possible to use a
conventional scanner as a colorimetric device. Thus, the colorimetric coordinates of the photographic material can be
determined accurately. Color editing has also been used to minimize the color distortions resulting from the photographic
process.

Conventional four-color printing results in a reproduction composed of cyan, magenta, yellow, and black inks.
Optimally, the ink amounts, expressed as effective dot areas on the page, should be determined that result in the same color as
the soft proof. Thus, the color print can be related back to the original object or scene to be reproduced when all the steps are
concatenated. Because the original object is likely colored with different colorants than the four printing primaries, the
reproduction results in a metameric match.

In summary, it is impossible to accurately reproduce original objects using the conventional techniques of
photography and process printing.



2. A NEW PARADIGM: MULTI-SPECTRAL COLOR REPRODUCTION

It is well known that the only way to assure a color match for all observers across changes in illumination is to achieve a
spectral match. Developing a spectral-based color reproduction system requires two critical subsystems. The first is a spectral
analysis system. The spectral properties of each image element must be known. The second is the ability to print using
multiple inks. If the printer has a large set of inks from which to choose from, it should be possible to select a subset of inks
that achieve a spectral match to critical scene elements. There are tremendous possibilities in achieving spectral matches
between original objects and their printed reproductions. Three subsystems are required: multi-spectral image estimation, ink
selection minimizing metamerism, and spectral-based printing models including separation algorithms. This is shown in
Figure 1. In addition to these subsystems, trichromatic-based multimedia imaging devices including CRT displays and
desktop printers can be easily incorporated. Essentially, trichromatic-based systems are a subset of multi-channel-based
systems.
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Figure 1 . Multi-spectral-based multimedia flowchart. (Van Gogh image copyright of National Gallery, London.)

There is an obvious parallel to the world of color matching of materials. In the United States, many stores that sell
house paint have color matching systems. These consist of a spectrophotometer, computer, and paint-dispensing system.
Most manufacturers including textiles, plastics, and coatings use similar systems. A standard’s spectral reflectance factor is
measured using the spectrophotometer. From a data base of colorants appropriate to the particular coloration process, a subset
is selected that when used to color the particular material system (e.g. paint or fabric), a match will result that is minimally
metameric. The software algorithms used in these systems can be divided into two steps. The first is colorant selection. From
a large database of colorants, the three or four colorant combination (the most common number of colorants used in a
formulation) is selected that results in the closest spectral match (i.e. least metameric). Once the colorants are determined,
their amounts, the recipe, is defined based on a color mixing model such as Kubelka-Munk turbid media theory. If an exact



spectral match will result, one can combine these steps. For example, forward-selection multiple-linear regression5 can be
used to order the candidate colorants in terms of their spectral matching potential. However, if an exact spectral match is not
possible, there will be residual colorimetric error; accordingly, the spectral matching algorithm might be used for colorant
selection followed by a colorimetric matching algorithm to insure a close match for a primary illuminant. Alternatively,
iterative methods are used where every three- or four-colorant combination is evaluated.

The multi-spectral image capture is equivalent to the spectrophotometer. A set of candidate inks is equivalent to the
database of appropriate colorants. The ink-selection algorithm is equivalent to colorant selection minimizing metamerism.
The spectral-printing model and separation algorithm is equivalent to determining the final color recipe.

3. MULTI-SPECTRAL IMAGE CAPTURE

Conventional image capture, both chemical and digital, is largely trichromatic. Three channels are used to record color
information. Traditional color science would argue that the requirements for building input devices are straightforward.
Trichromatic systems should have spectral responsivities that are linearly transformable from color matching functions
(sometimes called the Luther condition). For a wide-band system, it is impossible to distinguish between metameric stimuli.
Two approaches can be taken to estimate the spectral properties of scene elements.

The first, and most direct, method is to increase the sampling increment above three. Conceptually, this is equivalent
to using a spectrophotometer sampling the visible spectrum at constant bandpass and wavelength interval rather than a
colorimeter or densitometer. Although spectrophotometer accuracy requirements have not been universally defined, according
to the CIE,6 tristimulus errors will not be introduced when measuring materials if a 5 nm wavelength increment and bandpass
are used. Ideally, one would want to sample every 5 nm with a 5 nm triangular bandpass throughout the visible spectrum.
This corresponds to 61 channels. Obviously, it is necessary to reduce the number of channels. However, one should be able to
decrease the sampling increment without a significant loss of spectral information, because of the absorption characteristics of
both man-made and natural colorants. Spectral analysis of colored stimuli using linear modeling techniques typically result in
less than ten eigenvectors.7-9 Thus one should be able to greatly reduce the number of channels from 61.

The second method is to perform an a priori spectral principal-component analysis (PCA) enabling either the optimal
filter design10-12 or a more accurate spectral reconstruction of the subsampled stimulus. This method is used routinely in
photography in the conversion between integral and analytical density. Because a given photographic material uses a single
set of cyan, magenta, and yellow dyes, three eigenvectors based on the absorption spectra will define the entire spectral gamut.
Thus, a three-channel measurement with a logarithmic response (necessary due the linear nature of the absorption spectra, not
the reflectance or transmittance spectra) can be used to estimate the spectral properties of photographic images. This technique
has been used to build high-accuracy device profiles for graphic arts scanners.4 Considerable research has been performed in
determining the minimum number of channels,12-25 their spectral response, and how the multichannel information is used for
spectral estimation. Issues include colorimetric accuracy, spectral accuracy, and noise propagation. For example, research at
the Munsell Color Science Laboratory14-17 has focused on using a typical monochrome digital camera (Kodak Professional
DCS 200m) in conjunction with a set of seven readily-available filters from Melles Griot. The spectral sensitivities of the
seven channels are shown in Figure 2.

The method of spectral estimation was based on an eigenvector analysis of a subset of the Munsell Book of Color
sampling this system’s color gamut. The first five eigenvectors were used. The spectral reconstruction for a given sample is
computed by

f = Φα +  µf, (1)
where, Φ = e 1,e2,...,e5 , µf is the mean spectral vector, and αT = a1, a 2,...a5  is the set of five scalar weights associated
with the sample to be reconstructed spectrally. The scalars can be found by

α = ΦTΦ -1ΦT(f  - µf). (2)

The term ΦTΦ -1ΦT can be interpreted as a matrix of spectral sensitivity functions that could be used to analyze a sample, f,
for subsequent spectral reconstruction. For the multi-spectral camera, however, the spectral reconstruction needs to be based
on the camera signals, s . This can be achieved by computing a least-square (5 x 7) matrix, M, to transform the camera
signals into estimates of the scalar coefficients α . The spectral reconstruction is then given by,



f  = Φ M s (3)
where sT = s1,s2,...,s7 . Equation (3) does not include the mean vector, µf, since the principal components used in this
reconstruction were calculated as the eigenvectors of the second moments about zero, rather than the usual covariance matrix
about the mean.
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Figure 2 . The spectral sensitivity of each of the seven filter/sensor channels.

Since each of the optical filter spectral transmittance curves has a similar shape, one can think of the image
collection, prior to detection, as a spectral filtering followed by a sampling operation with ∆λ=50 nm.26 This view of image
acquisition lends itself to spectral reconstruction via interpolation schemes such as cubic-spline and modified-discrete-sine-
transformation (MDST) interpolation.22,23

 
The latter method relies on properties of the sine-transform (and Fourier-transform)

representations of a signal. Simple extrapolation is applied to the sine transform of an input array, followed by inverse
transformation. An interpolated signal can then be extracted from the resulting data. These two interpolation methods were
also evaluated. Figure 3 shows that spectral estimation results in large differences on spectral-reconstruction accuracy. The
poor results for the two interpolation techniques were expected given the spectral width of the seven channels which limits the
high-spectral frequency components in the detected signal.
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Figure 3 . The  spectral  reconstruction  using  principal-component  analysis  (PCA),  modified-discrete-sine-transformation
(MDST) and cubic spline interpolation, from camera signal values, for the cyan sample of the Macbeth ColorChecker chart.17



In the above method, the visible spectrum was evenly sampled. It may be possible to improve the accuracy of the
spectral reconstruction by unevenly sampling in order to optimize for a defined class of materials. For example, research
performed at the Munsell Color Science Laboratory11 found that different colorant systems required different spectral sampling
for optimal results as shown in Figure 4 comparing an embodiment of the Munsell Book of Color (Chroma Cosmos 5000)
and the Macbeth ColorChecker chart.
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Figure 4.  Optimal seven-channel spectral relative responsivities for highest colorimetric accuracy
           for the Chroma Cosmos 5000 (top) and a Macbeth ColorChecker (bottom).11

Multi-spectral image capture has been used by England’s National Gallery to accurately record the colorimetric values
(CIELAB) of paintings for archival and conservation purposes.27,28 Because of the inherent low resolution of digital cameras
and the large size of many paintings, they scan across the painting and use mosaic-type software to fuse the various image
subspaces. After appropriate signal and spatial processing, 20K x 20K 10-bit L*, 11-bit a* and b* encoded images result. The
National Gallery has been very successful in developing colorimetric image archives and using them to provide the European
community with accurate color reproductions in both soft-copy and hard-copy forms under a defined set of illuminating and
viewing conditions (i.e. colorimetric color reproduction).

We have an interest in drawing upon the European experiences and making two enhancements. The first is
alleviating the need to scan across the painting. This will greatly reduce the cost and complexity of the image acquisition
system. The second is to define images spectrally and use the spectral information to provide the American community with
printed color reproductions that are close spectral matches to the original objects.

An imaging system is envisioned consisting of a high-resolution photographic system and a low-resolution multi-
spectral digital system. In this system, each pixel of each multi-spectral image is interpolated to produce a high-spatial



resolution image keeping its color information and changing the original lightness for the lightness data of corresponding
high-spatial resolution image subpixels, without noticing the expected decrease of tonal resolution in the hybrid image,
because the modulation of the light in the eye becomes progressively smaller as the spatial frequency increases.29 This visual
feature of human eye has been applied in photography, in television, as well as to devise very effective compression
algorithms such as JPEG. The lightness and color information can be codified respectively as CIELAB L* and CIELAB a*,
b* in order to allow the system to be easily optimized to have the least color difference in CIELAB ∆Eab*. Figure 5 shows a
schematic diagram of this proposed method.
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Figure 5.  Diagram of proposed image fusion.

At first, L* is calculated for each pixel of the high spatial resolution image. The CIELAB a* b* values for each
pixel of the multi-spectral image is computed from the camera signals t i , i = 1 to m and m is the number of filters, by a non-
linear transformation. The images are fused keeping L* of the high spatial resolution image and combining with the a*, b*



values of the low spatial resolution image. The tristimulus values of each pixel of the hybrid image is calculated and the
camera signals of each channel are calculated by linear combination. Finally the hybrid high-resolution spectral image is
reconstructed by principal-component analysis. We can divide the hybrid multi-spectral generation into three parts: the spectral
analysis, the image fusion, and the spectral reconstruction.

Spectral Analysis

Performance of an a priori spectral analysis of the sampled data is necessary to achieve an accurate spectral reconstruction for
the specified sampling rate and filter system characteristics such as type, shape and number. It is possible to optimize the
filters10,13 but it is not considered in this stage of the research because such optimized filters are usually very difficult to be
manufactured.  The number of basis functions necessary for accurate spectral reconstruction also depends on the database used
for PCA. However, 5 to 8 basis vectors seem to be sufficient for an accurate spectral reconstruction of artwork.

One can model multi-spectral image acquisition using matrix-vector notation. Expressing the sampled illumination
spectral power distribution as
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and the object spectral reflectance as r=[r1, r2, ... rn]
T, where the index indicates the set of n wavelength over the visible range

and T the transpose matrix, representing the transmittance characteristics of the m filters as columns of F
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and the spectral sensitivity of the detector as
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, (6)

then the captured image is given by t=(DF)TSr  and the color vector can be represented as c=At=(X, Y, Z)T where X, Y, Z are
the CIE tristimulus values. The CIELAB L*, a*, b* are given by the non-linear transformation ξ, where ξ( X,  Y,  Z ) = L*,
a*, b*.

Image Fusion

The color matrix of the hybrid image is c’=(X’ Y’ Z’)T, where X’, Y’, Z’ are the tristimulus values corresponding to the high
spatial resolution subpixel L*  combined with the original multi-spectral a*, b* values and X’, Y’, Z’ are obtained by non-
linear transformation ξ-1. The digital count for each pixel of the hybrid image is given by t’= (ATA) -1A tc’.

Spectral Reconstruction of Hybrid Image

The reconstructed spectral reflectance for sample i is given by: ˆ r i = Φα i , where Φ=[e1 e2 ... en], where e1 e 2 ... en are the

eigenvectors of the second moments about the zero vector, and α i = [a1 a2 ... an]
T= Φri are the associated eigenvalues. Φ is a

priori information obtained by principal-component analysis of sampled spectral reflectance and α i can be estimated as
follows: α ≈ ˆ α = Bt'  where B=αt’T[t’ t’T]-1 where the rows of α correspond to the samples in the set of reflectance vectors
for each set-illuminant combination.



4. SPECTRAL-BASED SEPARATION AND PRINTING ALGORITHM DEVELOPMENT

Reducing metamerism between objects and their printed reproductions implies spectral matching. The color of the output
device is defined by its spectral reflectance factor rather than colorimetric coordinates. In spectral-based research, it is more
common to develop models rather than build mxn dimensional look-up tables where m  counts the number of measured
samples and n counts the number of wavelengths. The first step in developing a spectral-based printing system is the
derivation of an accurate spectral model of color printing. There are many representative color printings models.30-40

As an example Iino and Berns34,36 used the Yule-Nielsen modified Neugebauer equations to model process printing,
shown in Eq. (7) where ai are the effective dot areas of the 16 Neugebauer primaries for four-color printing, described in the
usual manner by the Demichel equations, R i are the reflectance factors of each ith Neugebauer primary, c, m , y and k, are dot
areas of each primary ink, and nl is the Yule-Nielsen n value defined as a function of wavelength. Typical spectral model fits
are shown in Figure 6.

Rλ = (ac Rλ ,c
1/ nλ + am Rλ ,m

1/ n λ + a yRλ, y
1/ nλ + ak Rλ,k

1/ nλ

+ar Rλ,r
1/ nλ + ag Rλ , g

1/ nλ + abRλ,b
1/ nλ

+ackRλ , ck
1/ nλ + amk Rλ ,mk

1/ n λ + aykRλ ,yk
1/ nλ

+ark Rλ,rk
1/ nλ + agkRλ , gk

1/ nλ + abk Rλ ,bk
1 / nλ

+acmy Rλ ,cmy
1/ nλ + acmyk Rλ ,cmyk

1/ nλ + aw λ ,w
1/ n λ )nλ ,

(7)
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Figure 6.  Measured spectral reflectance factor (dashed line) and predicted spectral
               reflectance factor (solid line) of the magenta ramp based on Eq. (7).36

One difficulty often encountered in using the Demichel equations to predict the entire color gamut is a discrepancy
between predicted and actual area coverage caused by optical interactions. Recognizing that the Yule-Nielsen modification is
empirical, this can be removed in favor of increasing the number of Neugebauer primaries. This approach is more in line with
the true optics of ink paper interactions. The number of primaries can be increased to i2 where i counts the number of
primaries or to infinity.39,40 Alternatively, the empirical equation is used with an augmentation where the optical interactions
are accounted for in the conversion between theoretical and actual area coverages.34,36,41  Iino and Berns described this using Eq.
(8). Their colorimetric performance was, on average, ∆E*ab of 2.2 with a maximum of 5 for independent colors sampling a
printer color gamut represented by Matchprint III.



q c = f c _ m (dt , m) fc _ y (d t,y ) fc _ k (dt ,k )

qm = fm _ c (dt , c) fm _ y(d t ,y ) fm _ k (dt ,k )

q y = f y _c (dt ,c ) f y _ m(dt, m ) fy _ k (d t,k )

qk = f k _c (dt ,c ) fk _ m(dt, m ) fk _ y (d t,y )

(8)

where q
i
 is coefficient q for the overlapped ink i, the function fi_j(dt,j) is the decreasing effective dot gain function of the

secondary color (overlapped ink i by overlapping ink j), and dt,j is the theoretical dot area of each overlapping primary color.

In order to fully develop a multimedia system that is analogous to the color matching of paints or textiles, a large
database of inks is required. The purpose of the database is to provide sufficient spectral variability, such that one can “tune” a
spectral reflectance factor, thereby matching the spectral properties of an object requiring color reproduction. This requirement
is different from typical multi-ink systems, largely concerned with increasing color gamut.41-51 Published research where
minimizing metamerism is the goal rather than increasing color gamut has been limited to preliminary research by one of the
authors.52

Using a small-aperture spectrophotometer, the spectral reflectance factor of 100 positions across a landscape painting
was measured, plotted in Figure 7. Transforming the spectral data to absorption and scattering ratios using Kubelka-Munk
turbid media theory, performing principal-component analysis, and rotating the significant characteristic vectors to an all-
positive representation, a statistical set of pigments results, shown in Figure 8.51 This statistical set of pigments will predict
the 100 measurements to an average ∆E*

94 of 0.8 and a maximum of 1.8. The degree of metamerism,52 expressed in CIE94
units, is 0.1 on average with a maximum of 0.3. Once a printing system is defined and spectrally modeled, the optimal ink
set can be determined that minimizes metamerism compared with the statistical pigment set.

5. SYSTEM EVALUATION

Once the spectral-based multimedia system has been developed, quality metrics are required. These should include CIE94 color
difference metric53, special indices of metamerism,52,54,55 , indices of color inconstancy55, and indices that include the human
visual system’s spatial properties.56,57
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Figure 7 . Measured spectral reflectance factors of 10x10 grid sampling a landscape painting.



700600500400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Wavelength (nm)

R
el

at
iv

e 
A

b
so

rp
ti

o
n/

S
ca

tt
er

in
g

Figure 8 . Statistical colorants representing a painting.51

6. CONCLUSION

Evaluating multimedia imaging as one of many applications of color science can result in a new paradigm for color imaging,
multi-spectral-based imaging. However, developing multichannel multimedia systems will likely cause a dramatic increase in
cost (hardware, software, personnel training, data storage, image access, etc.). If only an increase in color accuracy compared
with the current state of multimedia imaging was the benefit, a cost-benefit analysis would probably not result in a favorable
outcome. Fortunately, there are many additional benefits that result from spectral data bases and color printing that minimizes
metamerism. Perhaps most important is the potential to define and thereby archive objects using the most fundamental
definition, spectral reflectance factor. As an analogy, the U.S.’s National Institute of Standards and Technology only provides
spectral definitions for their standard-reference materials used for spectrophotometers. Matching spectra minimize the need for
controlling lighting, viewing conditions, and observers. The benefits we take for granted when having our automobile
refinished after a collision or when we purchase clothing can be applied to multimedia.
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