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ABSTRACT 
 

This dissertation addresses the problem of capturing spectral images for human portraits 
and evaluating image quality of spectral images. A new spectral imaging approach is 
proposed in this dissertation for spectral images of human portraits. Thorough statistical 
analysis is performed for spectral reflectances from various races and different face parts. 
A spectral imaging system has been designed and calibrated in spectral imaging for 
human portraits. The calibrated imaging system has the ability to represent not only the 
facial skin but also the spectra of lips, eyes and hairs from various races as well.  The 
generated spectral images can be applied to color-imaging system design and analysis. 
 
To evaluate the image quality of spectral imaging system, a visual psychophysical image 
quality experiment has been performed in this dissertation. The spectral images are 
simulated based on real spectral imaging system. Meaningful image quality results have 
been obtained for spectral images generated from different spectral imaging systems. To 
bridge the gap between the physical measures and subjective visual perceptions of image 
quality, four image distortion factors are defined. Image quality metrics are obtained and 
evaluated based statistical analysis and multiple regression analysis. The image quality 
metrics have high correlation with subjective assessment for image quality. The image 
quality contribution of the distortion factors are evaluated. 
 
As an extension of the work other researchers in MCSL have initiated, this dissertation 
research will, working with other researchers in MCSL, put effort to build a publicly 
accessible database of spectral images, Lippmann2000.   
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 1 

1 INTRODUCTION 

 
This dissertation addresses the problem of capturing spectral images of human portraits 

and evaluating image quality of spectral imaging systems. Most of the traditional color-

imaging and reproduction systems have been designed in a trichromatic fashion with 

three response functions, resulting in three color signals, i.e., RGB color values. These 

approaches can reproduce color quite capably.  However, there are several problems 

inherent in these approaches, which will cause large color shifts. This becomes apparent 

in the image capture and reproduction of metameric objects1. The only way to solve these 

problems is to attempt to produce spectral matches between the original objects and their 

reproductions. The key idea is to replace the world of red, green and blue with the world 

of wavelength.2 This dissertation research is concentrated on the spectral imaging of 

human portraits and corresponding image quality. 

Facial color reproduction is an important aspect of color-imaging system design and 

analysis. Visible spectral images of human portraits are desired to test color imaging 

system design via computer simulation. The study of spectral imaging of human portraits 

in this dissertation is motivated in part by the previous multi-spectral image research of 

artwork3, 4, 5, 6, 7 and realistic spectral image synthesis1  in the Munsell Color Science 

Laboratory, and spectral skin color image research by Imai et al.8 They provided 

formulations and methods involving spectral imaging system and spectral image capture. 

They also provided detail studies of spectral image application in human skin and 

computer graphics.  However, a high quality spectral human portrait needs some specific 
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considering of its own.  Some previous spectral portrait image research8 performed the 

system calibration based on the painting samples which were the reproductions of the   

reflectance   spectra of skin directly measured. These approaches required very accurate 

reproductions of skin at a fairly early stage to avoid propagating errors through all the 

following procedures. Moreover, those reproduced spectral paintings excluded the 

spectra of the lips, eyes and hairs which we consider are important parts of the human 

portrait information. These paintings also could not contain the geometric spectral 

information related to the specific subjects under specific lighting conditions. Experience 

in spectral image experiments also indicates that calibrated system only based on the 

standard color checker will not represent the spectra of human portrait accurate enough. 

This dissertation includes efforts to calibrate the imaging system and capture spectral 

images of human portraits based on the spectral data directly recorded from human 

subjects with certain lighting conditions. The calibrated imaging system included the 

ability to represent not only the facial skin but also the spectra of lips, eyes and hairs as 

well.  The generated spectral images can be applied to color-imaging system design and 

analysis. 

As the applications of spectral images become increasingly popular in recent years, 

image quality studies in this field have been of greater practical interest.9,10,11,12 However, 

little has been studied on the evaluation of overall quality of spectral images obtained by 

digital spectral imaging systems.  Typically, when designing a wide-band visible spectral 

imaging system, it is important to select a proper number of channels to capture the 

images. During processing stage, while applying principal components analysis (PCA) 



 3 

method, it is important to select the proper number of eigenvectors and transform matrix 

to construct the spectral images.  Often, one needs to balance the accuracy of spectral 

information and noise tolerance of the spectral images.  Based on PCA method, more 

channels or more eigenvectors used will give more accuracy of reconstructed spectral 

information. However, on the other hand, more channels or more eigenvectors used will 

yield more noise in the reconstructed spectral images.10 Other issues, like the stability of 

transform matrix and the selection of objective function in imaging system optimization, 

will also affect the final spectral images.  Image quality study for spectral imaging, 

therefore, is worth doing. This dissertation includes visual psychophysical experimental 

evaluation for spectral images. The spectral images were simulated using different 

imaging system settings. To bridge the gap between the physical measures and subjective 

visual perceptions of image quality, effort had been made to build the image quality 

metrics. Four distortion factors were defined to describe the impairment of image quality. 

Image quality metrics would be determined from the principal components analysis for 

distortion factors and multiple regression analysis. The importance of contribution from 

distortion factors was evaluated based on statistical analysis. Statistical analysis of image 

quality metrics will be also performed. 

As an extension of the work other researchers in MCSL have initiated, this 

dissertation research has, working with other researchers in MCSL, put effort to build a 

publicly accessible database of spectral images, Lippmann2000.   

In the following chapters, first we will provide some background review in spectral 

imaging and image quality. Then we will demonstrate details of spectral imaging system 
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design for spectral imaging of human portraits. Statistical analysis of human facial 

spectra will be provided and the estimated spectral images for display will be given. To 

study further the spectral imaging system, we then perform image quality analysis for the 

spectral imaging system. Spectral imaging systems are simulated using different system 

settings. Spectral images are then simulated. A visual image quality assessment 

experiment was carried out and subjective image quality scores were obtained. Four 

distortion factors are defined and computed. The results of the visual quality experiment 

and corresponding distortion factor measures will be thoroughly investigated. Finally, 

image quality metrics are proposed to relate the subjective image quality assessment and 

objective distortion measures. Details of statistical analysis for image quality metrics and 

distortion factors are provided. Some suggestion to improve the spectral imaging system 

design is also provided. Further interesting issues and research directions in spectral 

imaging system and image quality are recommended and discussed. 
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2. BACKGROUND LITERATURE REVIEW 

 
2.1 Spectral Characterization of Human Face 
The color, or spectra of human subjects depends chiefly on the presence of pigment and 

blood.13, 14 Different races and localizations of human beings have different spectral 

characteristics though the pigments involved are the same. 

2.1.1 Spectral Characterization of Skin 

Much research has been done on color of human beings, especially human skin. 

Biological and anatomical research indicates that the skin is made up of three layers, 

epidermis, dermis and hypodermis. Dealing with the color, we simply divide the skin into 

an outer thin layer, epidermis, and an inner, relatively thick layer, dermis as shown in Fig. 

2-1. 
 
 

Figure 2-1. Scheme picture of human skin  

For normal human skin, the absorption of the epidermis is dominated by a black 

pigment called melanin though there are five different pigments in the skin.15 The 

spectral characteristics of different races or different individuals are due only to variation 

in the amount of melanin present.16, 17 People with dark brown or black skin have many 

melanin particles; people with medium to light brown skin have fewer; people with very 

 
Epidemis (melanin)

Dermis (hemoglobin, melanin)
Skin

Inner layer

Outer layer
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light brown to white skin have only a very few. Buckley and Grum,18 and Kollias and 

Baqer14 performed experiments to measure the spectral characteristics of human melanin 

by measuring spectra of normal skin and vitiligo-involved skin of volunteers-patients. 

Their research indicated that the spectral reflectance of melanin in the visible range is 

monotonically increasing.  The inner layer, dermis, is rich with blood vessels which 

contain hemoglobin. Hemoglobin has marked absorption bands around 575nm, 540nm 

and 410nm.19, 20 Brumsting and Sheard13, 14 indicated that the marked absorption bands of 

hemoglobin occur only when it bounds with oxygen within vivo skin. Those measured 

spectra are shown in Fig. 2-2. Heavily pigmented skin will present less pronounced effect 

of the hemoglobin absorption bands because of the masking effect of the greater amount 

of melanin pigmentation. Skin optics21 further showed that the epidermis is a strongly 

forward scattering layer and, for all wavelengths considered, scattering is much more 

important than absorption. Details of skin biology are beyond the scope of this research. 

2.1.2 Spectral Characterization of Eyes, Hair and Lips 

The skin is not the only part of the human body that differs in color from one individual 

to another. The eyes and hair have the same elements affecting their coloring. In the eye, 

as in the skin, melanin is the dominant pigment material. However, in this case, the 

location of the melanin is as important as the amount. Research15 indicated that, in brown 

and black eyes, there is melanin on the inside of the white and iris, and on the front of the 

iris as well.  In blue eyes, the melanin is found only on the inside. While the white of the 

eye is opaque and lets no light pass at all, the colorless tissue of the iris does let some 

light  through. They   scatter  and   change the   colors  in    much   the  same  way  as  the  
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Figure 2-2. Measured spectral data of human skin in early research.  
 (a). mean spectral reflectances of human skin from various races (copied from  

Brunsting & Sheard’s work,13 1929); (b). spectral transmittance for hemologlobin 
 and melanin (copied from Buck’s work,19 1948).  

 
colorless upper skin layers do. Therefore, like the sky looks blue because the atmosphere 

scatters the light passing through it, the iris appears blue rather than brown or black when 

the eyes have melanin only on the inside. 

 Copied from Brunsting&Sheard, 1929Copied from Brunsting&Sheard, 1929Copied from Brunsting&Sheard, 1929Copied from Brunsting&Sheard, 1929
(a)
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As similar in the skin and eyes, melanin, eumelanin (brown-black) and phaemelanin 

(yellow-red) is the hair sometimes has a red-gold pigment as well.15 Hair contains a 

center section, a middle area and a scaly outer skin. When there are only a few melanin 

particles in the middle area, the colorless outer skin softens the brownish-black color of 

the melanin so much that the hair appears blond. When both the middle area and the 

center section of each hair are rich with melanin, the hair appears brown. And when the 

center section is packed with melanin the hair is black. Hair become white or gray when 

there is not any melanin at all or little melanin in the center or middle sections. 

Human lips are rich with blood vessels. Therefore, the spectral properties of human 

lips are very close to that of hemoglobin with marked absorption bands around 575nm, 

540nm and 410nm. 

2.2 Spectral Imaging 
Most of the traditional color-imaging and reproduction systems functioned in a 

trichromatic fashion with three response functions, resulting in three color signals, i.e., 

RGB color values. Because of the problems involved in the image capture and 

reproduction of metameric objects, spectral matches between the original objects and 

their reproductions are attracting the attention of many researchers in recent years.1-7 The 

key idea is to replace the world of red, green and blue with the world of wavelength. 

Therefore, instead of providing RGB color values in traditional color images, each pixel 

of the spectral images will provide the spectral reflectance information at that pixel.  This 

dissertation concentrates on the spectral imaging system using wide-band method in the 

visible range. 
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2.2.1 Spectral Image and Spectral Imaging System 

Multi-spectral image acquisition can be modeled using matrix-vector notation.9 The 

illumination spectral power distribution can be expressed as in Eq. 2-1:  
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transpose. The transmittance characteristics of the m filters will be given in the following 

form in Eq. 2-2: 
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The spectral sensitivity of the detector, i.e., CCD digital camera, will be given in Eq. 

2-3: 
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Then the captured image is given in Eq. 2-4.  
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where I is the digital counts of the pixel. The spectral reflectance of each pixel, 

theoretically, can be obtained using pseudoinverse from Eq.(2-4). However, in most cases,  

there are fewer digital counts than wavelengths for each pixel, the spectral reflectance 

obtained using pseudoinverse method here may yield large uncertainty and give large 

error. The advantage here is convenient to do simulation and check the results.6 Therefore, 

PCA method will be performed as an alternative choice. We will discuss this in detail 

below. The color vector can be obtained as C = A⋅⋅⋅⋅I =(X,Y,Z)T where X, Y, Z are the CIE 

tristimulus values and A is a transfer matrix. The CIELab L*, a*, b* are given by the 

non-linear transformation Ψ, where Ψ(X,Y,Z) = L*, a*, b*.   

The spectral reflectance R(x, y, λ), where x, y denote the coordinates of the image 

pixel, can be estimated using spectral reconstruction methods based on statistical analyses, 

PCA. It can also be obtained by using interpolation techniques such as cubic spline done 

by  Burns.9 Burns and Berns3 indicated that the method of PCA would give more accurate 

results than interpolation methods.  
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2.2.2 Spectral Imaging for Human Portraiture 

Facial color reproduction is an important aspect of color-imaging system design and 

analysis. Visible spectral images of human portraits are desired to test color imaging 

system design via computer simulation. Previous research,22, 23 based on 108 reflectance 

spectra of skin in faces of  54 Japanese women,   showed that the spectral reflectance of 

human skin, can be represented by three basis functions using PCA. Therefore, the 

spectral reflectance of each pixel of the captured image could be estimated from the 

values of three color channels and the spectral radiance of the illuminant used. These 

experiments showed very successful results. .  However, the spectral reflectance database 

employed in these experiments was concentrated on a single race and only on skin. The 

spectral measurement geometry is generally fixed to 45/0 or d/0. Considering the 

capability of spectral imaging systems  for  different races of human portraits  it seems 

worth including spectral reflectances of different races and those spectral data should 

include skin, hair,  eyes and lips as well. Therefore, the number of basis functions used 

for this research need to be re-determined. Since the human face is not a planar but a 3-

dimensional object, the spectra of the subjects observed by the camera could vary with 

any geometry. In other words, to perform an accurate calibration of the spectral imaging 

system, the spectral database should be with large gamut including various geometric 

configurations. In addition, previous spectral portrait image researches performed the 

system calibration based on the painting samples which were the reproductions of the   

measured spectral reflectance of skin. Those paint samples were not available for us. 

Moreover, these approaches required very accurate reproductions of skin at a fairly early 
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stage to avoid the errors passed through all the following procedures.  Other researchers24 

calibrated their system and determined basis functions  based on Munsell chips, paint 

chips and natural objects. We consider those methods could neither provide sufficient 

geometric information of the real spectral reflectance of the face nor represent them 

precisely. According to these considerations, therefore, we proposed a new procedure and 

designed a new spectral imaging system for human portraiture that has the capability to 

capture spectral images of various races and describe spectral reflectances of  skin, hair, 

eyes and lips very well. This imaging system would perform system calibration and 

capture spectral images based on the spectral data directly recorded from the real human 

subjects with certain lighting and camera conditions. The spectral reflectance measured 

above will be analyzed by PCA. Based on the results of PCA, both three wide band and 

six wide band spectral images will be estimated respectively.   

2.2.3 Principal Components Analysis 

The PCA method is a mathematical technique which describes a multivariate set of 

measured data using basis functions, or called eigenvectors. The basis functions are 

formulated using specific linear combinations of the original variables. The basis 

functions are uncorrelated and are computed in decreasing order of importance; the first 

function accounts for as much as possible of the variation in the original data, the second 

function accounts for the second largest portion of the variation in the original data, and 

so on. The PCA method attempts to construct a small set of basis functions which 

summarize the original data, thereby reducing the dimensionality of the original data. In 

practice, though the accuracy of spectral reconstruction depends on the number of basis 
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functions used, 5 to 8 basis functions are sufficient for accurate spectral reconstruction 

used in artwork,6, 9, 25, 26  while 3 basis functions are satisfied in spectral reproduction of 

human skin8.  Details of the PCA can be found in many textbooks.27, 28 

Applying the PCA method to the measured spectral reflectance of the objects, the number 

of basis functions for accurate spectral reproduction can be determined based on the 

cumulative proportion rates of the basis functions.  Suppose six basis functions are 

sufficient to represent the spectral reflectance of human face, including skin, hairs, eyes 

and lips. The  spectral reflectance of human face can then be expressed as a linear 

combination of the basis functions as in Eq. 2-5. 

where r  is the average spectral reflectance, ui are the basis functions, or eigenvectors, 

and αi are the eigenvalues. The tristimulus values X, Y, Z can be calculated by Eq. 2-6:  
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where r(λ) is the spectral reflectance, E(λ) is the spectral radiance of the illumination, 

)(,)(,)( λλλ zyx  are the color matching functions, and K is a normalized constant. 

Eq.(6) can be converted to matrix notation as shown in Eq. 2-7: 
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where T represent the transpose, the matrix e and r are matrix notations of E(λ) and r(λ) 

respectively. And the matrices z,y,x  are color-matching function represented as follows: 
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From Eqs. 2-5 and 2-7 can then be written as  
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Eqs. 2-11 ~2-13 then can be rewritten as follows: 
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We can treat the first terms of Eqs. 2-14 ~ 2-16 as the contribution of the averaged 

spectral reflectance to the tristimulus values, and the second terms as the contribution of 

six basis functions or eigenvectors.  Therefore, we have the following equation: 
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where ZYX ,, are the averaged tristimulus values and Xi, Yi, Zi(i = 1,2,...,6) are the 

tristimulus values corresponding to the six basis functions of spectral reflectance of face. 

However, to determine the six eigenvalues, three more equations need to be provided. 

Therefore, a filter is employed, either in front of the lighting source or detector, to yield 

another three equations given in Eq. 2-18: 
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where T(λ) is spectral transmittance of the filter, Xf, Yf, and Zf are corresponding 

tristimulus values. Using the similar procedure as above, we can derive the final 

equations with matrix form as given in Eq. 2-19: 
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Combining Eqs. (17) and Eqs. (19), we have six independent equations with six 

unknown eigenvalues. The matrix form of these six equations is shown in Eq. 2-20: 

 

The eigenvalues are then given by using Eq. 2-21. After determine the six 

eigenvalues, the spectral reflectance of human face can be obtained by basis functions 

using Eq. 2-5. 
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2.3 Image quality for Spectral Imaging 
Many factors will impact the spectral or color accuracy of spectral images. In the 

capturing stage, noise in the CCD sensors is a big factor to image quality.9, 10 Burns and 

Berns9,10,29 indicated that noise error in CCD will propagate through image 

transformation and cause the color shift in the final spectral images.  The selection of 

wide-band or narrow band,30  selection of filters31 and number of channels9 will also 

contribute to the image quality or color and spectral accuracy of reproduced spectral 

images.  During construction stage, many transform matrices need to be optimized and 

other algorithms need to be applied to estimate the spectra. The selection of those 

optimization objects will also impact the accuracy the spectral reproduction.32 Imai32 

compared various metrics that had been used for spectral matches. These metrics can be 

categorized in three classes: CIE color difference equations, spectral curves difference 

metrics and metamerism indices.  Hill33 proposed a observer matched basis functions 

method  to control the channels of multichannel display to reproduce colors at least error 

for every human observer and obtained very impressive results. Overall, most of previous 

research concentrated on the accuracy of spectral or color reproduction of spectral images. 
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Only a little has been studied on the evaluation of overall image quality of spectral 

images obtained by digital spectral imaging systems. We believe that the study of image 

quality of spectral imaging system will guide us toward a more efficient and correct way 

to optimize our design for spectral imaging systems. 

Image quality (IQ) is the integrated set of perceptions of the overall degree of 

excellence of the image.34 IQ evaluation is usually divided into two classes, subjective 

measure and quantitative objective measure. 

2.3.1 Subjective Measure 

Subjective IQ is evaluated through visual assessment by human observers. Since the 

purpose of the most imaging system is to generate images from which human observers 

can extract relevant information, it is necessary to take into account the judgment of the 

human observer, subjective assessment. However, subjective assessments of quality are 

experimentally difficult and lengthy, and the results obtained may suffer from variability 

due to observers and to the test conditions.35, 36 Therefore, from some point of view, 

subjective IQ is often regarded as inferior measurement method compared to objective IQ 

methods. 34 

2.3.2 Quantitative Objective Measure 

Objective measures of IQ would not only overcome the difficulties suffered by subjective 

assessments, but also would produce repeatable results and reflect the perceptions of IQ. 

Further, the objective measures would provide constructive methods to improve the 

design process of imaging system. 37 However, as mentioned above, by some definition at 



 20

least, human observers are the final judges of image quality. The objective measure of 

IQ, therefore, should correlate as well as possible, with the human IQ assessment.  

2.3.3 Image Quality in Spectral Imaging 

Though people paid much attention to the spectral and color accuracy when designing a 

spectral imaging system, little has been reported in the field of overall image quality in 

spectral imaging system. Theoretically, perfect spectral match will guarantee perfect 

color match between a object and its reproduction. In practice, however, it is impossible 

to build a spectral imaging system that can reproduce any spectra perfectly well.  

Therefore, often, when designing a spectral imaging system, one has to balance among 

the accuracy of spectral information, noise tolerance and accuracy of color reproduction 

of the spectral images.9 When building algorithms to estimate the spectra, there are many 

criteria to choose based on different practice need. It is well known that minimizing 

spectral error does not guarantee to provide most accurate color reproduction, except this 

spectral error is zero. Even talking the spectral error itself, there are many criteria to 

describe, such as root mean square (RMS) error, correlation coefficient and etc. 

Researchers did lot of work in this issue.32, 33, 38 There are also involved many other 

issues in estimating the spectra in spectral imaging as mentioned in the introduction 

chapter. Conclusively, researchers mostly concentrated on the balance between the 

accuracies of spectral and color reproductions. Since the final product is the image, either 

black-white or color, it is reasonable and worth considering how these above issues will 

impact the quality of the final image. Results should provide us a helpful guide for 

designing of a spectral imaging system. Much previous researches on the IQ of digital 
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imaging system can provide some good suggestions to deal with the IQ in spectral 

imaging system. 

During the past decade many kinds of digital devices such as digital cameras and 

digital scanners have been developed and widely used for color image recording instead 

of traditional analog photography. To study the potential capabilities of digital imaging 

system, researchers have proposed many image quality models. 36, 38, 39, 40, 41, 42, 43, 44 Some 

of them connect technology variables with customer quality preferences, others connect 

physical image parameters with user quality preference.  

2.3.4 Objective Picture Quality Scale (PQS) Method 

Among those IQ models, Miyahara’s 44 objective Picture Quality Scale (PQS) method is 

very impressive and widely used for image quality evaluation. It was originally proposed 

for quality estimation of monochromatic image coding. This method is based on 

classifying and quantifying actual distortions produced by coders and defining a set of 

partial distortion measures. The block diagram of PDS method is shown in Fig. 2-3. The 

approach is based on the perceptual properties of human vision. First the image signal is 

transformed into one which is proportional to the visual perception of luminance using 

the Weber-Fechner’s law and then the frequency weighted errors are obtained. Second, 

perceived image disturbances are described and the corresponding objective distortion 

factors that quantify each image degradation are obtained. Five distortion factors are 

defined that two of them are for random errors, one for blocking and the rest two are for 

correlated errors. Third, the mean opinion score (MOS) is determined from visual 

assessment scale  experiment   of  encoded   images.  Fourth,  the   principal   component  
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Figure 2-3. Conventional PQS system 
analysis is carried out to quantify the correlation between distortion factors. Finally, a 

multiple regression analysis is carried out between the principal component vectors and 

the measured MOS values, hence, determine the PQS. Therefore, the obtained quality 

metric, PQS, would have very good correlation with the subjective measure, MOS. We 

will follow the concept of PQS method in this research, not step by step of the details. 

Distortion factors in our research need to be redefined. For instance, error yielded from 

wavelength step selection, random noise in illumination and CCD camera, could be 

concerned in measure of spectral image quality. Also, measures of color difference of 

color image should be involved and treated as a distortion factor. The task is definitely 

very challenging since a wide range of spectral image sources and their corresponding 
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specific algorithms are involved. We will narrow our interest to some specific issues 

discussed below. 

2.3.5 Color Difference and Color Appearance Models 

In color reproduction, it is important to specify how accurately a color must be 

reproduced. Therefore, it is necessary to have an objective measurement for color 

differences. Such measurements are required to set and maintain color tolerances for 

production and sale of all colored materials.47 There are several metrics of color 

difference widely applied in a variety of industries, such as CIELAB ∆E*ab , CIE ∆E*9418 

and, more recently, CIEDE2000.48 It should be emphasized here that those metrics were 

designed for predicting the visual color difference of large isolated patches.  

Color appearance models extend the current systems to allow the description of what 

color stimuli look like under a variety of viewing conditions.47 Most of the effort in the 

formulation of color appearance models has been concentrated on the area of chromatic-

adaptation transforms. Chromatic adaptation is the human visual system’s capability to 

adjust to widely varying colors of illumination in order to approximately preserve the 

appearance of object colors. We need to apply chromatic-adaptation transform when 

dealing with color reproduction in cross-media. In this research  our application of color 

appearance model  will follow Fairchild’s revision model of CIECAM97s.49 The CIE 

1997 Interim Color Appearance Model (Simple Version), abbreviated CIECAM97s was 

proposed in 1997 in response to the needs of the imaging industry for a single-applicable, 

color appearance model for device-independent color imaging application. The revision 

model makes it more practically applicable. 
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2.3.6 Color Difference for Color Images 

When dealing with perceived color difference between images,  traditional method is to 

apply a standard color difference formula on a pixel-by-pixel basis and then examine 

statistics such as mean, standard deviation, etc. This often produces undesirable results 

when dealing with images that have been spatially altered, such as those processed with 

halftone algorithm.49To solve this problem, Zhang and Wandell proposed the S-CIELAB 

metric that extended the standard CIELAB ∆E equation by using a series of spatial filters. 

The flow chart using original S-CIELAB is shown in Figure 2-4. 

 
Figure 2-4. Flow chart of computing S-CIELAB(copied from reference 49)  

To compute the color difference, digital color images are spatially filtered using a 

pattern-color separable method51 and then converted into CIELAB representation. The 

first step in using S-CIELAB is to transform the input images into a device independent 

space, such as CIE XYZ tristimulus values or LMS cone responses. This can be done 
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very easily for spectral images with the device characterization and using chromatic-

adaptation. The filtering is then performed in an opponent color space, AC1C2, that 

containing one luminance and two chrominance channels. The AC1C2 color space were 

determined through a series of psychophysical experiments testing for pattern color 

separability.51 The transformation between AC1C2 and XYZ is given in Eq. 2-22.  
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The details of the spatial filters can be found in reference 50. In this research, 

however, the filtering will be performed in the frequency domain, rather than the spatial 

domain, by following Johnson and Fairchild’s method.49 Filtering in the frequency 

domain is performed using a simple multiplication, rather than a series of convolutions in 

spatial domain. Also, specifying the filters purely in the frequency domain allows for 

more precise control over the shape of the filter. The opponent channels must be first 

transformed into frequency domain by using Fourier transform. The filter in the 

luminance channel is given by a simple description of the general shape of the human 

contrast sensitivity function (CSF) proposed by Movshon52 as shown in Eq. 2-23: 

)232(,75)( 8.02.0 −⋅⋅= ⋅− f
lum effcsf                                                   

where f is the frequency. It is important to note that csflum here behaves as a band-pass 

filter with peak around 4 cycle per degree (cpd). As recommended by Johnson and 

Fairchild49, csflum can be normalized such that the DC component will not change after 

filtering. This will make it consistent with the existing color difference formulas that 
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accurately predict color differences of simple patches. Two chrominance channel filters 

are given in Eq. 2-24 and Eq. 2-25 respectively: 

2
2

1
1

21)( cc fbfb
rg eaeafcsf ⋅⋅ ⋅+⋅= ,                                  (2-24) 

4
4

3
3

43)( cc fbfb
by eaeafcsf ⋅⋅ ⋅+⋅= ,                                            (2-25) 

where csfrg and csfby are filters for chrominance red-green channel and chrominance blue-

yellow channel respectively, a1= 109.1413, b1= -0.0004, c1= 3.424, a2= 93.6, b2= -0.0037, 

c2= 2.168, a3= 7.033, b3= 0.000, c3= 4.258, a4= 40.691, b4= -0.104, c4= 1.649. 

The filtered opponent channels are then transformed back into CIE XYZ space using 

the inverse of Eq. (2-22). The color differences between the original and the reproduced 

image, therefore, can then be calculated pixel-by-pixel  using CIELAB ∆E formula. The 

mean color difference then can be obtained to represent the color difference between 

these two images. An alternative way is to apply CIEDE2000 color difference equation 

on the filtered images.49  

2.3.7 Image Quality of Color Image 

To deal with the IQ of color image in this research, we need to define some distortion 

factors. The color difference for color image as mentioned above can be a candidate for 

one of the distortion factors. Since noise is always involved in imaging system, therefore, 

the graininess can be chosen as another distortion factor to represent the noise effect. 

Different number of channels or basis functions, different objects in optimization 

procedures to estimate the spectra and number of terms of digits used in multivariable 

regression will impact the accuracy of spectra and color. These accuracies of spectra and 

color will affect the spreading level of spectra and colors around their true values, hence, 
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impact the sharpness and contrast of the final color images for display. Therefore, 

sharpness and contrast can be treated as distortion factor as well. 

2.3.7.1 Graininess Factor 

Typically, root mean square (RMS) granularity is popularly used as an objective measure 

in evaluating the graininess of the images.53 In this experiment, the objective measure of 

graininess is defined as the RMS error of original and its reproduction images, in the 

luminance channel of S-CIELAB opponent color space, after filtering as mentioned in 

previous section. 

2.3.7.2 Sharpness Factor 

To evaluate the effect of resolution on perceived image quality, Barten 54, 55 proposed so-

called square root integral (SQRI) as shown in Eq. 2-26. 

,)(
)(

2ln
1 max

0 f
df

fMt
fMSQRI

f

∫=                                         (2-26) 

where f is the angular spatial frequency at the eye of the observer in cpd,  fmax is the 

maximum angular spatial frequency displayed. M(f) is the modulation threshold function 

(MTF) of the display, and Mt(f) is the modulation threshold function of the  eye. The 

inverse of the modulation threshold function of the eye is usually called the contrast 

sensitivity function (CSF) which is given in Eq. 2-27.56   

)272(,1)(
1)( −⋅+⋅⋅⋅== ⋅⋅− fbfb ecefafMtfCSF  

where  
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and w is the angular display size in degree, calculated from the square root of the picture 

area, and L is the effective display luminance in candelas per square meter. Barten56 also 

suggested that, for pictures with a large luminance range, such as pictorial scenes, a  

luminance values equal to twice the average luminance should be used. It should be 

emphasize that SQRI is independent of image content. Researchers 56, 57, 58 indicated that 

SQRI values were correlated well to the subjective image sharpness for each individual 

image.  

2.3.7.3 Contrast Factor 

Calabria and Fairchild13 proposed an empirical mathematical equation of Single Image 

Perceived (SIPk) contrast. This equation provides us a tool to judge contrast in color 

image without reference to an original image. Though the validity of this equation for 

other image experiments is questionable and needs further study, SIPk was selected as 

fourth distortion factor in this experiment. SIPk is given in Eq. 2-28. 

SIPk = -1.505 + 0.131kc + 0.151kl + 666.216ks  ,                         (2-28) 

where kc, kl, ks are image chroma standard deviation, lightness standard deviation and the 

standard deviation of high-frequency lightness image (filtering by Sobel filter) 

respectively. 
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2.4 Spectral Database: Lippmann2000 
Mitchell Rosen, a color scientist in MCSL, proposed to create a publicly accessible 

database of spectral images. This database is named Lippmann2000 in honor of Gabriel 

Lippmann who in 1891 devised a method to perfectly reconstruct the spectral content of 

real world scenes.59 This site has been conceived of as a resource for investigators in the 

field of spectral imaging with emphasis on the sub-topics of interest to the research staff 

and faculty of the Munsell Color Science Laboratory. Currently, it contains six sections. 

They are Real World Spectral Images, Synthesized Spectral Images, Technical Papers on 

Spectral Imaging, Programs Useful for Spectral Imaging Research, Spectral Database and 

Spectral Imaging Links. It is still an ongoing database. Some data and technical reports 

from this dissertation research have been contributed to the Lippmann2000 database. 
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3.  SPECTRAL IMAGING FOR HUMAN PORTRAITURE 
 
In this research we will deal with spectral imaging for human portraits from various races. 

As mentioned in previous chapters, for better imaging system calibration, we propose a 

new approach of capturing spectral images of human portraiture. The designed imaging 

system will be calibrated directly based on real human subjects and has the capability to 

provide accurate spectral images of human faces, including facial skin as well as the lips, 

eyes, and hair, from various ethnic races. The facial spectral reflectances obtained will 

analyzed by PCA method. Based on the results of PCA, spectral images using both three 

and six wide-band spectral sampling will be estimated.  

3.1 Spectral Imaging System Design 
The portrait studio digital camera used for this research is SONY DKC-ST5 Digital 

Photo Camera. It is a high-quality electronic photography system, using a three-chip  

high-resolution CCD camera with total 1,400,000 pixels. Its A/D conversion uses a 10-bit 

lookup table for each R, G and B channel, which makes flexible color gradation 

representation. Its output image is 24-bit, 8-bit for each channel, size of 2048×2560 with 

TIFF format. A 202 half C.T blue filter, Professional Lighting Filters, Bogen Photo Corp., 

was chosen to give additional filtered RGB for six-band spectral imaging. Its spectral 

transmittance is shown in Fig. 3-1 which was measured using a Macbeth Color-Eye 7000, 

spectrophotometer. The criterion here is to choose a filter with some variation in spectral 

transmittance and the transmittance should not be too small in any wavelength60.  

Mathematically, adding one filter should provide three linear independent equations as 
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mentioned in previous sections. Considering the fact that, generally, the blue channel 

image of CCD camera has relative low image-noise ratio, it is better to choose a filter 

with relatively high spectral transmittance in the short wavelengths. Fig. 3-1 shows that 

the spectra have more absorption in long wavelengths than that in short wavelengths.   
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Figure 3-1. Spectral transmittance of filter, 202 half C.T blue. 

The lighting system consisted of two lighting heads (Scanlite Digital 1000, 

Elinchrom) with Halogen Photo Optic lamps (FEL/1000w, 120V). A Photo Research Inc. 

SpectraScan 704 (PR-704) spectroradiometer was used in the spectral measurement. The 

wavelength range used in this experiment is in visible region, 400 ~ 700nm with 2nm 

interval. The optic path of the spectral imaging system is shown in Fig. 3-2. 

 

Figure 3-2. Scheme of optic path of the spectral imaging system. 
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The real picture of the main imaging system is shown in Fig. 3-3 as followings: 

 

Figure 3-3. Picture of the spectral imaging system. 

One difficult part of this research was to measure the spectral reflectance and its 

corresponding digital count (mean value) at the same position. This was accomplished by 

adding an optical mirror and spectroradiometer PR-704 as shown in Fig. 3-2 and Fig. 3-3. 

We selected the circular aperture setting of 0.5 degree in PR-704 for the spectral 

measurement as illustrated in Fig. 3-2. Optical radiation being measured passed through 

the circular aperture inside PR-704 and then reached the detector for the spectral 

measurement. A mirror was attached to a slide mounted carrier that could move along the 

table bench. This system was calibrated so that the pixel positions in the image of a 

subject that contributed to the spectral measurement in PR-704 were known. The distance 

from the subject to PR-704, L1+L2 in Fig. 6, was selected in such a way that the 

uncertainty of calibrated pixel area was less than 2.5% on the assumption that the subject 

surface would move back and forth around the calibrated position within 2cm. The 

distance we selected was about 1.6m. We could select a longer distance for accuracy 

purposes. However, the area covered by the aperture of PR-704 would be too large and 
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the spectra measured would be spatially averaged too much. It was estimated that, with 

~3% error of subject surface that corresponding to subject moving back and forth about 

±3 cm, the color difference, ∆Eab was less than 0.08. This proved that the designed 

imaging-measurement system, theoretically,  was quite accurate. The distances from 

mirror to PR-704 and mirror to digital camera are almost the same. 

During the experiment the subjects were sitting on a chair with their heads against a 

holder. They were asked to adjust their chair up and down, left and right, until the 

position of interest fell into the grid box  which was shown on the monitor. We first took 

a picture of the subject, then moved the mirror to its calibrated position and made spectral 

measurement of the same subject at the same position. The spectral reflectances of 

various face surfaces of subjects and their corresponding camera responses, digital 

counts, therefore, could be obtained. Based on this system setting, the spectral 

measurement would match the different geometries as detected by the camera.   

3.2 Imaging System Calibration 
During the experiment, the camera automatic white balance was disabled by setting the 

temperature to 3200K for the tungsten lighting used. For signal-noise considerations, the 

shutter speed was set to 1/1000 with the exposure of ISO160. Under the lighting and 

camera conditions we would use for real image capturing, a high quality white reference, 

barium sulfate coated paper with spectrally flat and uniform property,  was employed to 

adjust the camera setting so that the image of white reference (at the position where 

subject sat for imaging) would give maximum digit values without saturation and satisfy 

the white balance. The spectral radiance of the lighting on the position where real 
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subjects sat for imaging was measured by PR-704 with the white reference as a standard. 

The measured spectral radiance is shown in Fig. 3-4.  

 

Figure 3-4. Spectral radiance of the lighting fallen on subject 

Fig. 3-4 shows that the spectral radiance of the lighting used in this experiment has 

relatively very smaller intensity in the range of short wavelength. This is a disadvantage 

since it will produce even more noise in the blue channel of the digital camera. Some 

other necessary measurements and calibrations were performed before the experiment 

could be completed.   

3.2.1 Imaging Spot Calibration  

Printed samples with different shapes and sizes were used to calibrate the imaging spot so 

that the pixel positions in the image of a subject that contributed to the spectral 

measurement in PR-704 could be determined. Printed samples were placed at the imaging 

position and their spots viewed from the PR-704 were checked. The sample with its spot 

viewed through PR-704 matching the aperture spot of the PR-704  would be selected as 

spot calibration target. Image of this selected printed sample was then taken by the digital 
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camera. Its corresponding pixel positions in the image could then be determined. In 

practice, an equation was used to fit the spot pixels in the image. In the following 

experiment, this equation would be used to determine the pixels of the subjects’ face area 

that contributed to the spectral measurements.  An important note here is that this 

procedure should be performed time to time to make sure that each equipment of the 

imaging system had not  been moved. The camera system has a function to create a grid 

box with any size and any position in the image frame that could be displayed on an 

attached monitor. A fixed grid box located at the center of image frame was created and 

its position and size were fixed through whole experiment duration. The size of this grid 

box was adjusted to the same diameter size as the image spot  of the printed spot 

calibration target. With those settings, it was easy and safe to maintain the imaging 

system at its calibrated position through whole period of the imaging experiments. 

3.2.2 Spectral Reflectance of Mirror 

To measure the spectral reflectance of the mirror  under the experimental condition, we 

first placed the white reference paper, as mentioned above, on the calibrated position 

where real subjects would be taken for pictures and spectral measurement. Next, we 

measured the spectral radiance of that position with the mirror and PR-704 located at 

their calibrated positions. Then, we placed the PR-704 perpendicularly to the white 

reference paper, without mirror, with the same distance as that from PR-704 to mirror 

plus mirror to white paper at the previous step and took measurement for spectral 

radiance. Knowing the spectral reflectance of the white reference paper, the spectral 
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reflectance of the mirror, therefore, could be easily calculated. Its spectral reflectance is 

shown in Fig. 3-5.  

 

Figure 3-5. Spectral reflectance of the mirror  

3.2.3 Optoelectronic Conversion Function of Digital Camera 

The next pre-experiment measurement was to measure the optoelectronic conversion 

function (OECF ) of the camera. Most digital cameras have nonlinear photometric 

response that the relationship between the digital numbers in the image file and the scene 

reflectance which produced the digits is nonlinear. This relationship is known as the 

optoelectronic conversion function. The nonlinearity is employed to minimize visual 

artifacts caused by optical and digital limitations.62 To connect those digits to the 

tristimulus values,  the digits should be first linearized to transform to linear reflectance 

space based on the optoelectronic conversion function. The common methods are fit 

procedure using one-dimensional look-up table involving interpolation or a polynomial 

function and etc.  

The camera setting and lighting system were the same  as we would perform for real 

imaging. The OECF was determined by imaging  gray scales, Kodak GrayScale, Q14, 

with the addition of  a high quality white paper mentioned above and a complete dark. 
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The gray scale was located at the position where subject would sit for real imaging. Each 

gray scale was taken one shot containing three R, G, and B channel images. The images 

of gray scales should be all taken at the same position to avoid the non-uniformity of the 

illumination involved. The camera system has a function to create a grid box with any 

size and any position shown on the screen of an attached monitor. Using this function,  

during measurement, each gray scale was easily placed at the same position shown by 

grid box which was located at the center of the image frame. For each gray scale, the 

digital count of image for each channel was a mean of the pixel values clipped at the 

center of the  image with the pixel size of 31x41. The composite OECF of the camera is 

shown in Fig. 3-6. The OECF curves shown in Fig. 3-6 are not linear. After comparing 

with many fit methods, we find that three 1-D look-up tables will be a best choice to 

relate the digital counts to reflectance factors. As we mentioned in the previous section, 

the linearized R, G, B will be calculated based on OECF using these three 1-D look-up 

tables.  

 

Figure 3-6. The optoelectronic conversion curve of the camera 
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3.2.4 Spectral Sensitivities of Digital Camera 

Two methods, monochromator method and interference filter method, could be employed 

to measure the spectral sensitivity responses of the digital camera. Imai61 showed that 

monochromator method is a better choice. This experiment would perform 

monochromator method. A light source Module Model 740-20 (serial 8553) in 

connection with double monochromators, part of the Optical Radiation Measurement 

System Model 740A (serial 185268-5) from Optronic Laboratories Inc., was used in this 

measurement. Hewlett Packard Hamsom 6274A DC Power Supply (0 – 60V 0 – 15A) 

was set to provide stable 0.06A current to the light. This light source with 

monochromator provided narrow-band illumination at the 10nm exit slit, over a range 

380 – 780nm at 5nm intervals. An optic fiber with a neutral filter was attached to the exit 

slit. The surface of the digital camera lens was kept to a proper distance, 91cm at this 

experiment, from the surface of the optic fiber. The experiment was performed in a dark 

environment. Each image will be cropped in the same position centered in the light spot 

producing a proper, i.e., 60x50 pixels, 2-D RGB image. Based on the OEF measured 

above, 2-D RGB images were then linearized into reflectance space. After dark current 

correction,  the averaged linearized digital counts for each channel of the digital camera 

over wavelength range then could be obtained. Next, a calibrated photo-detector 

(Optronic Laboratories Inc., OL730-5C Silicon Photo detector SIN:1152 Hex Key with 

calibration certification data: May 30, 1998) was attached to the exit slit.  The spectral 

response of this standard photo-detector was given and the source spectral irradiance, 

radiance and current were measured over the same range used above by Optronic 
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Laboratories Inc., Radiometer 730A (serial: 850190). Based on the average linearized 

digital counts and the measured irradiance or radiance and current data,  the spectral 

sensitivity of R, G, and B channels of the digital camera could be obtained. The relative 

spectral sensitivity of the camera is shown in the Fig. 3-7.  
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Figure 3-7. Measured relative spectral sensitivities of digital camera 

The spectral sensitivity of the camera indicates that the wavelength response range of 

the camera is from 380nm to 700nm. Therefore, just as many researchers used, we will 

choose the wavelength range of 400nm to 700nm in our measurement. Since the PR704 

can measure the spectra with the range from 380nm to 780nm with 2nm interval, all 

spectral data used in this experiment were interpolated into wavelength step of 2nm. The 

color matching function (CIE 1931, 2° observer ), and other standard illumination spectra 

would then be interpolated into wavelength step of 2nm from 400nm to 700nm.  

3.3 Spectral Imaging Experiment 

A  total 34 of subjects from age 18 to 40, 11 female and 23 male participated in the 

experiment. The experiment was performed from June to January.  The subjects can be 
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categorized into five races, 11 subjects for Pacific-Asian, 8 for Caucasian, 7 for Black, 6 

for  Subcontinental-Asian and 2 for Hispanic.63 During the experiment the subjects were 

sitting on a chair with their heads against a holder. For each subject, two images, with 

and without filter, were taken for future spectral image construction. They were then 

asked to adjust their chair up and down, left and right, until the position of interest face 

area fell into the grid box  which was shown on the monitor. We first took two pictures of 

the subject, with and without filter, then moved the mirror to its calibrated position and 

made spectral measurement of the same subject at the same position. Each subject 

provided 16 spectral reflectances which, in general, would contain 10 for facial skin, 3 

for hair, 2 for eye and 1 for lips. The locations of spectral measurement were randomly 

selected considering uniformity of sampling. Therefore, a total 540 of spectral 

reflectances and their corresponding camera digits were obtained for imaging system 

calibration and modeling.  

3.4 Statistical Analysis for Spectral Reflectances of Human Face 
The measured spectral reflectances in terms of different races are shown in Fig 3-8. 

Light-pigmented races,  the  Pacific-Asian  and  Caucasian,  display   obvious  absorption  

bands while those absorption bands are, more or less, masked for heavy-pigmented races, 

the Black and Suncontinental-Asian . Those spectral reflectances in terms of different 

face parts are shown in Fig. 3-9.  

The spectral reflectances in terms of different face parts display distinguished spectral 

characterizations. For example, the spectra of hair display monotonically increasing 
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behavior without obvious absorption bands while spectra of lips showing strong 

absorption bands. Those behavior are discussed in detail in the following sections. 
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Figure 3-8. Measured spectral reflectances in terms of different races. 

(a) for Pacific-Asian; (b) for Caucasian; (c) for Black;  
(d) for Subcontinental-Asian; (e) for Hispanic. 
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Figure 3-9. Measured spectral reflectances in terms of different face parts. 

(a) for skin; (b) for hair; (c) for eyes; (d) for lips 
 

To provide more visual pictures of the measured spectral reflectances of the human 

face, the L*, a* and b* 3D plot and their corresponding projections are shown in Fig. 3-

10 and Fig. 3-11 where Fig. 3-10 is for individual races and Fig. 3-11 is for different face 

parts. Fig. 3-10 indicates that in CIELAB space, the spectral reflectances of human face 

are mixed together and there are no significant clusters for different races. However, if 

we plot them based on different face parts, it shows significant clusters for different face 

parts. This suggests that different face parts have their specific spectral and color 

characterizations. This property may give us some practical suggestion when performing 

pattern recognition for human face.  

3.4.1 PCA Results from Various Races and Different Face Parts  

PCA method will be employed to analyze the statistical characterizations of the spectral 

reflectances. Based  on  the PCA results, the  cumulative contribution percentages  of  the   
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Figure 3-10. L*, a* b* plot and their corresponding projections for spectra  
of different races. Red dots are for Pacific-Asian, green for Caucasian,  

blue for Black, cyan for Hispanic and magenta for Subcontinental-Asian. 
 

Figure 3-11. L*, a* b* plot and their corresponding projections for spectra  
of different parts. Red dots are for skin, green for hair,  

blue for eyes and magenta for lips 
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first  one  to  six  principal  components for  spectral reflectances of all  races  (the 

combined data set) as well as individual races are shown in Table 3-1. The abbreviations 

PA for Pacific-Asian, C for Caucasian, SB for Subcontinental-Asian, B for Black, H for 

Hispanic and AR for all races will be used in the following sections.    

The results in Table 3-1 indicate that the first three principal components will cover 

over 99.8% of the variance for all spectral data of all races and spectral data of individual 

races as well. This suggests that a spectral imaging system with the proper selection of 

three basis functions will provide sufficiently accurate spectral reconstruction for all 

races as well as any individual race. Further observation indicates that, with three basis 

functions, the spectral reconstruction of  Pacific-Asian, Caucasian and Hispanic races 

will have slightly more accurate results than that for Black and Subcontinental-Asian.  

 

Table 3-1. Cumulative contribution percentage of principal components calculated from 
spectra of all races and individual races. See text for abbreviations. 

 
The  corresponding  first  three  principal  components are  shown in  Fig. 3-12.  Fig. 

3-12 shows that the first three principal components of each race and all races.  Fig. 3-12 

also indicates that the first three principal components of each race and all races  have 

very similar shapes. This suggests the possibility that the first three principal components 

of any race may be used to describe the spectra of other races. 

 

Number of principal components
Race 1 2 3 4 5 6
PA 98.56 99.76 99.95 99.98 99.99 99.99
C 97.75 99.65 99.91 99.96 99.98 99.99

SB 97.39 99.47 99.84 99.99 99.99 100.00
B 94.12 99.46 99.82 99.98 99.99 100.00
H 98.57 99.73 99.95 99.99 100.00 100.00

AR 97.89 99.57 99.89 99.97 99.99 99.99
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Figure 3-12. Graphs of the first three principal components of spectral reflectances for  

individual races and all races. Solid-dot line is for the 1st component, solid line for the 2nd 
component and dot line for the 3rd component.  (a) Pacific-Asian. (b) Caucasian. (c) 

Subcontinental-Asian. (d) Black. (e) Hispanic. (f) All Races. 
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The cumulative contribution percentages of the first one to six principal components 

for spectral reflectance of each facial part are given in Table 3-2. Not surprisingly, the 

first three principal components for most parts will provide over 99.8% of the variance of 

spectral  reflectances  with  one  exception  of spectra  of  lips  which is about 99.7%. The 

PCA results in Table 3-1 and 3-2 here also verify that the spectra, or color, of the human 

body depends chiefly on the presence of pigment and blood, melanin and hemoglobin.  

 

Table 3-2. Cumulative contribution percentage of principal components calculated 
from face spectra of individual parts. 

 
3.4.2 Color Reproductions Based on Different Basis Functions 

Next the mean color differences between spectral reflectances measured and 

reconstructed based on the first three basis functions are considered for the application of  

certain sets of basis functions to their own group and to spectra of other groups as well. 

The color difference equation applies the CIELAB color difference with the CIE 2○ 

observer and D50 illuminant. The results shown in Table 3-3  are for different races. The 

horizontal items are the spectral groups that yielded the principal components while the 

vertical items are the spectral groups the basis functions were applied to. Similar item 

arrangements are applied to the Tables 3-4, 3-5 and 3-9. 

 

 

Number of principal components
Parts 1 2 3 4 5 6
Skin 97.90 99.40 99.83 99.95 99.98 99.99
Hair 98.76 99.88 99.95 99.99 100.00 100.00
Eye 91.97 99.53 99.81 99.95 99.98 99.99
Lip 95.86 99.17 99.67 99.88 99.95 99.97
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Table 3-3.  Mean color difference in reproduction of individual races and all races using 
 different    sets of 3 principal components. The horizontal races are the spectral  

groups that yielded the principal components while the vertical races are the spectral  
groups the basis functions were applied to. See text for abbreviations. 

 
The basis functions based on spectra of all races will give smaller color difference for 

races   of   Pacific-Asian,   Caucasian  and  Hispanic  than  that  for  races   of  Black   and  

Subcontinental-Asian. This may be due to the facts that in heavy pigmented races, such 

as Black and Subcontinental-Asian, the spectral characteristics of hemoglobin are masked 

and show some slight specific property in spectra that need more basis functions to 

reproduce at the same level of accuracy as that for light pigmented races. It could also be 

due to the fact that more noise was involved in those data with lower signal level. 

Considering individual race, not surprisingly, most races will have smallest color 

difference when the basis functions used for spectral reconstruction are based on their 

own spectra data (the diagonal color difference values). The basis functions based on 

light pigment races will give smaller color difference when they are applied to light 

pigment races. The same is true for the basis functions based on heavy pigment races 

applied to heavy pigment races. Mathematically, for basis functions based on all races, 

the variance of  the  data  of  five  races  are comparatively  large because  of  including  

both  low-  and  high-order  statistics; for  one  race  using  its own set  of  basis functions 

the  variance  of  spectral data is comparatively small  because  of  the inclusion  only  

 

PA C SA B H AR
PA 0.45 0.95 0.73 1.05 0.60 0.98
C 0.66 0.65 1.06 1.20 0.65 0.83
SA 0.77 1.30 0.54 0.81 0.92 1.28
B 1.00 1.52 0.68 0.84 1.16 1.51
H 0.47 0.76 0.73 1.07 0.46 0.90
AR 0.67 1.05 0.76 1.00 0.78 1.10
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low-order  statistics. Therefore, generally, the best color reproduction or spectral 

matching will occur when spectra of each race employ its own set of basis functions.  

Most interesting is that the first three basis functions based on any individual race can 

provide a smaller mean color difference for overall spectral reconstruction of all races 

than that derived from the three basis functions based on overall spectra (the last row). 

The first three basis functions of  Pacific-Asian will provide the smallest color difference 

for overall spectra of all races; it will improve about 40%. Moreover, using this set of 

three basis functions, the color difference of spectral reconstruction for other races will be 

decreased about 20 ~ 55% compared to that using the first three basis functions yielded 

from overall spectra. This suggests that to obtain better color reproduction of spectral 

imaging system, when using three basis functions under illumination D50, the basis 

functions based on spectra of Pacific-Asian race will be the best choice, not the basis 

functions based on spectra of overall races. This may be partly due to the fact that the 

Pacific-Asian is medium pigmented race and its spectra have both characteristics shown 

in light and heavy pigmented races.   

One thing should be emphasized here is that for calibration purposes, the spectral data 

of all races is still required to get the maximum spectral range. Further research indicates 

that when using six basis functions, the set of basis functions based on the spectra of 

overall races will be much better the choice for color reproduction  of the overall spectra . 

The same is true in the case of using six basis functions that the best color reproduction 

will occur when spectra of each race employs its own set of basis functions.  
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One should always keep in mind, however, that the best colorimetric matching does 

not always guarantee to provide the best spectral matching, and vice versa. Considering 

spectral reproduction itself, it may be better to estimate the root mean square (RMS) error 

between original spectra and reconstructed spectra. To more precisely demonstrate the 

color reproduction of spectral matching, the indices of metamerism employing Fairman’s 

metameric correction using parameric decomposition (Appendix A) are an alternative 

choice. Table 3-4.1 and 3-4.2 show the results of RMS error and mean metameric indices 

using the same sets of basis functions as in table 3-3, respectively. The indices of 

metamerism were calculated using illuminants D50 and A.  

 

(1) 
 

(2) 
Table 3-4. RMS values and mean metameric indices of spectral reproduction for 
individual races and all races using different sets of three principal components. 
The horizontal races are the spectral groups yielded the principal components 

while the vertical races are the spectral groups the basis functions were applied 
to. (1) RMS values, unit of 10-4; (2) Metameric indices. See text for abbreviations. 

 
 
 

 

PA C SA B H AR
PA 29 41 69 75 32 34
C 56 38 108 107 50 43
SA 51 55 30 32 48 40
B 57 58 34 32 54 43
H 27 32 62 69 24 32
AR 47 47 70 72 44 39

 

PA C SA B H AR
PA 0.15 0.29 0.38 0.46 0.21 0.26
C 0.25 0.18 0.51 0.52 0.23 0.19
SA 0.37 0.49 0.24 0.32 0.37 0.34
B 0.46 0.56 0.30 0.34 0.46 0.39
H 0.14 0.28 0.30 0.39 0.18 0.23
AR 0.28 0.35 0.37 0.43 0.29 0.28
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Table 3-4 indicates that for best spectral matching of overall spectra the set of basis 

functions based on spectra of overall races will be the best choice. Because of the reason 

mentioned above, the best spectral reproduction or spectral matching for spectra of each 

race will occur when it employs its own set of basis functions (the diagonal values). 

Table 3-4 also shows that overall reconstructed spectra based on the basis functions 

yielded from light pigmented races will provide better color as well as spectral 

reproduction. As similar to the situation in the results of Table 3-3, Table 3-4.2 shows 

that the basis functions based on spectra of Pacific-Asian will still give much better color 

reproduction when applying to overall spectra of all races although basis functions based 

on spectra of all races will be the best choice, precisely.  

Further research indicates that using more than three basis functions, basis functions 

based on spectra of all races will provide smaller errors in spectral and colorimetric 

matching compared to using other sets of basis function based on other individual races 

though the differences may not be visually detectable. In practice, however, we should 

consider the advantage provided by spectral of all races.   

It should be emphasized here that caution should be used when using RMS error to 

analyze the spectral reproduction since RMS error only provides information on the 

absolute spectral difference between measured and estimated results. For example, in 

Table 3-4.1,  RMS values for Caucasian and Black  are the same when using basis 

functions based on all spectra. However,  considering the much smaller absolute values 

of spectral reflectances of Black compared to that of Caucasian, one concludes that basis 

functions based on all spectra will provide better spectral reproduction for Caucasian than 
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for Black, which can be proved from the results in Table 3-4.2 that the mean index of 

metamerism for Black is double the value for Caucasian. 

The results shown in Tables 3-5 are indices of metamerism and RMS spectral error 

for spectral reconstruction using various sets of three basis functions for spectra of 

different facial parts. Table 3-5.1 indicates that the set of first three basis functions based 

on all spectra will give at least double mean color difference for hair spectral 

reconstruction compared that for other parts (the last column). This may be due to the fact 

that spectral reflectances of hair are so dark that spectral reconstruction using three basis 

functions based on all data will yield some negative values in some wavelengths, hence 

larger color difference. The results also indicate that the basis functions from skin can not 

be used to describe the spectra of hair. On the other hand, somewhat surprisingly, basis 

functions based on spectra of hair can be used to describe other parts very well.  However, 

since most part of human portrait will deal with skin, it is worth using the set of basis 

functions yielded from overall spectra with the cost of relatively large color difference of 

spectral reproduction for hair. Our further research indicates that this problem can be 

solved using more number of basis functions based on overall spectra. Considering three 

basis functions based on spectra of lips, it shows that due to their specific spectral 

characteristics, they cannot be used to describe spectra of other parts.  

 

(1) 

Skin Hair Eyes Lips AR
Skin 0.64 0.97 1.04 4.57 0.75
Hair 6.16 0.13 0.98 16.38 2.57
Eyes 1.20 0.40 0.37 2.03 0.62
Lips 1.45 0.70 1.13 0.69 1.13
AR 1.81 0.72 0.95 6.28 1.10
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(2) 
Table 3- 5. Mean color difference and indices of metamerism in reproduction of individual face 

parts using different sets of 3 principal components.  The horizontal races are the spectral groups 
yielded the principal components while the vertical races are the spectral groups the basis 

functions were applied to. (1) Mean color differences; (2) Indices of metamerism. 
 
The corresponding  indices of metamerism are shown in Tables 3-5.2. Table 3-5.2 

proves that the set of first three basis functions based on all spectra will provide very 

good color and spectral reproduction for skin, eyes and lips with the cost of relatively 

high color and spectral error for hair. On the other hand, somewhat interesting, basis 

functions based on spectra of eyes will provide the smallest mean metameric index of 

overall spectra. However, it is not a best choice for spectral reproduction of skin. As 

mentioned, it is worth using the set of basis functions yielded from overall spectra, which 

will improve about 30% color and spectral reproduction of spectra of skin compared to 

that using basis functions based on eyes. 

3.4.3 Statistical Analysis for Skin Spectra  

Since facial skin is the most important part in color and spectral reproduction of human 

portraits its spectral characterization is considered in more detail. As an overview to the 

skin spectra of individual races, their mean spectra are plotted in Fig. 3-13. Fig. 3-13 

shows that each race has roughly similar shape of mean skin spectral reflectance. 

However, the heavy pigmented races, Black and Subcontinental-Asian, mask most of the 

spectral characterization of hemoglobin and appear more nearly monotonically increasing, 

Skin Hair Eyes Lips AR
Skin 0.17 0.82 0.23 0.90 0.18
Hair 1.95 0.05 0.29 4.47 0.71
Eyes 0.31 0.67 0.12 0.62 0.16
Lips 0.19 0.88 0.41 0.13 0.22
AR 0.53 0.66 0.24 1.50 0.28
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revealing the spectral characteristic of melanin in the visible range. Light pigmented 

races, Caucasian, Pacific-Asian and Hispanic, on the other hand, show apparent 

absorption bands of hemoglobin around 575nm, 540nm and 410nm. Those spectral 

characteristics are consistent with the results discussed in the introduction section. The 

cumulative contribution percentages of the first one to six  basis  functions  of  skin  

spectra  for  individual races  are  shown in Table 3-6. It  shows  that three basis functions 
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Figure 3-13. Mean skin spectral reflectances of individual races and all races 

will cover over 99.7% of variance of skin spectra for each race. 

 

Table 3-6. Cumulative contribution percentage of principal components calculated from 
spectra of skin spectra for individual races. See text for abbreviations. 

 

 

Number of Principal Components
Race 1 2 3 4 5 6
PA 95.65 99.04 99.69 99.89 99.95 99.96
C 94.21 99.01 99.71 99.84 99.94 99.97

SA 97.36 99.34 99.78 99.98 99.99 99.99
B 97.77 99.60 99.92 99.98 99.99 99.99
H 96.40 99.45 99.82 99.97 99.98 99.99
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The first three basis functions are shown in Fig. 3-14. Fig. 3-14 shows that for skin 

spectra, three light-pigmented races have very similar first three basis functions while the 

same is true for two heavy-pigmented races. However, it is obvious that the third basis 

functions of light and heavy pigmented races are different. This may be due to the fact 

that skin of heavy-pigmented races has a masking effect on spectral characterization of 

hemoglobin. Comparing basis functions based on spectra of all skin in Fig. 3-14(f) and 

basis functions based  on all spectra of all races in Fig. 3-12(f)  shows  that the two sets of 

first three basis functions are very similar. This may be the reason why basis functions 

based on all spectra of all races can provide quite accurate color and spectral reproduction  
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Figure 3-14. Graphs of the first three basis functions for spectral reflectances of facial skin 

of individual races and all races. Solid-dot line is for the 1st component, solid line for the 2nd 
component and dot line for the 3rd component.  (a) Pacific-Asian;  

(b) Caucasian; (c) Subcontinental-Asian; (d) Black. (e) Hispanic. (f) All Races. 
 

for spectra of skin, and vice versa. 

The results of color and spectral reproduction of skin for individual races when using 

3 and 6 basis functions based on all spectra of all races are given in Table 3-7.  

 

(1) 
 

 

(2) 
Table 3-7.  Color differences and indices of metamerism in spectral reproduction of 
skin for individual races when using 3 and 6 basis functions based on all spectra of 
all races. (1) color difference; (2) indices of metamerism. See text for abbreviations. 

See text for abbreviations. 
 
Table 3-7 shows that three basis functions based on all spectra of all races will 

provide good color and spectral reproduction for light-pigmented skin (Pacific-Asian, 

 

No. PA C SA B H AllSkin
3 0.53 0.67 0.83 1.17 0.53 0.75
6 0.16 0.20 0.11 0.08 0.17 0.15

 

No. PA C SA B H AllSkin
3 0.14 0.15 0.21 0.28 0.12 0.18
6 0.02 0.02 0.01 0.01 0.02 0.02
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Caucasian and Hispanic) while there are relatively large color difference and metameric 

indices, but still small enough for practical application, for heavy-pigmented skin (Black 

and Subcontinental-Asian). It also suggests that color and spectra reproduction will be 

improved when using more basis functions, especially for heavy pigmented skin.  

The spectral reflectances shown above were measured using remote-type method. It is 

worth doing some comparison with spectra measured by contact-type method from other 

researchers.  Based on current available spectral data we will concentrate only on skin 

spectra. The skin spectra measured by contact-type method here are provided by Dr. 

Pietikäinen from Oulu University, Finlan64 and referred to as the Oulu data. The Oulu 

data contains 357 spectra measured from facial skin of 119 subjects with a Minolta CM-

2002 spectrophotometer. Each subject provided 3 spectral measurements from the left 

and right cheek and the forehead. Details of the Oulu data are given in reference 18. The 

Oulu data are characterized into three races, Pacific-Asian, Caucasian and Black. There 

were 10 Pacific-Asian, 101 Caucasian and 8 Black subjects. The mean skin spectra of 

individual races in the Oulu data are shown in Fig. 3-15. Comparing Fig. 3-13 and Fig. 3-

15, it shows that mean skin spectra of Oulu data are higher than mean skin spectra in our 

data for the same races. This is due to two major reasons. One is the different locations 

selected for spectral measurements. Our measurement selected more locations than the 

Oulu  data  measurement.  The  other  reason  is  the  different   measurement  geometries 

involved in the two data sets. Our spectral data contained various geometries while Oulu 

data contained only d/8 geometry65. It could also be partly due to the population 

measured.  Fig. 3-15,  like  Fig. 3-13,  shows  apparent  absorption  bands  of hemoglobin  
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Figure 3-15. Mean spectra of skin for individual races in Oulu data. 

 
around 575nm, 540nm and 410nm for light pigmented races. first three basis functions of 

Oulu data are shown in Fig. 3-16. Comparing Fig. 3-14 and Fig. 3-16, it shows that basis 

functions of light-pigmented skin have very similar shapes while basis functions of 

heavy-pigmented skin, Black skin, have very similar shapes of their own. 

The cumulative contribution percentages of the first one to six principal components 

of skin spectra for individual races in the Oulu data are shown in Table 3-8. Table 3-8 

shows  that  the cumulative percentage  using  three  basis  functions  for  light pigmented  
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Figure 3-16. First three basis functions of skin spectra of individual races and all races in 
Oulu data. Solid-dot line is for 1st component, solid line for 2nd component and dot line 

for 3rd component. (a) Oulu Pacific-Asian; (b) Oulu Caucasian; (c) Oulu Black; (d) Oulu All. 
 
 

races, Pacific-Asian and Caucasian, in Oulu data are relatively small compared to that of 

the spectral data in Table 3-6.  Japanese  skin  spectra reported by Imai1 has  comparable 

cumulative percentage using three basis functions with that of Pacific-Asian skin in our 

spectral data. The reason for this difference is unknown, but we presume that geometric 

difference may play a role. 

 

Table 3-8. Cumulative contribution percentage of principal components calculated  
from spectra of skin spectra for individual races in Oulu data. PA is Pacific-Asian; 

C is Caucasian; B is Black; RA is all races. 
 
For comparison purpose, we here also calculated the color differences applying 

various three basis functions shown in Fig. 3-12 to skin spectra in Oulu data. The results 

are shown in Table 3-9.  

Number of Basis Functions
Race 1 2 3 4 5 6
PA 93.42 97.52 99.27 99.71 99.91 99.97
C 82.41 95.24 98.53 99.37 99.74 99.87
B 98.30 99.71 99.87 99.97 100.00 100.00

AR 94.20 98.45 99.60 99.81 99.92 99.96
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Table 3-9. Color differences of spectral reproduction for skin spectra of individual races  

And  all races  in Oulu data using different sets of three principal components. C is  
Caucasian; PA is Pacific-Asian; B is Black; All skin is all skin spectra in Oulu data. 

 
Not surprisingly, basis functions based on all races will provide best color 

reproduction for overall skin spectra. Also, like the results in Table 3-3, basis functions 

based on light pigmented skin cannot provide good color reproduction for heavily 

pigmented skin, and vice versa. 

So far we discussed the color and spectral reproductions of skin spectral reflectances 

using different sets of basis functions based on  statistical  analysis.  One may want to 

know the deviation or degree of deviations of color within the skin spectral reflectances 

of individual races and individual subjects. We here provide two tables, table 2-10 and 

table 2-11. Table 2-10 shows the mean color differences between the skin spectral 

reflectances and their mean (shown in Fig 3-13 and Fig 3-15) of individual races. It also 

provides the standard deviation, maximum and minimum values of those color 

differences.  Table 2-11 also provides the results of mean color difference, but with 

different approach. We first calculate the color differences of each different pair of skin 

spectral reflectances of  each subject. Then we calculate the mean of those color 

differences within individual races. It also provides the maximum and minimum values 

of those color differences. The results of table 2-10 show that the deviations of color 

perception between the skin spectral reflectances and their mean spectra within individual 

 C PA B All Skin
C 0.42 0.56 3.89 0.45

PA 0.48 0.26 1.53 0.33
B 1.51 1.08 0.85 0.54

All Skin 0.50 0.57 3.45 0.44
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races are very large, over unit 5 in our data and over 3 in Oulu data. The relatively small 

mean values of Oulu data sets are probably due to their fewer sampling points. It can also 

indicate that the variation of skin color perception of Pacific-Asian is the smallest. Table 

2-11 shows that  the deviation of facial skin color perception is very large even within a 

single subject, which may be one of the reason that people can be distinguished easily 

one another from their facial skin features. Oulu data sets show the relatively small 

values with the same reason as discussed for table 2-10.  Considering the large variation 

of facial skin color in tables 2-9 and 2-10, it, in other hand, proved that  color 

reproductions of skin (see results in table 5) using three basis functions derived from all 

spectral reflectances measured are accurate enough in practical application. 

3.4.4 Summary 

The PCA results showed that the first three basis functions will provide quite accurate 

color and spectral reproduction for spectra of all races and individual races and individual 

facial parts as well. Considering color reproduction of spectral reconstruction using three 

basis functions in each race, the set of basis functions based on spectra of  Pacific-Asian 

will provide the best overall results. However, from spectral matching point of view, 

three basis functions based on all spectra will provide the best spectral reproduction with 

minimum overall mean value of indices of metamerism. Further observation indicates 

that  more basis functions may be necessary to improve the color and spectral 

reproduction of facial spectral reflectances of heavy- pigmented races and hair in facial 

part. Therefore, in the following research we will apply first three and first six basis 

functions based on all spectra.  
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Table 3-10. Mean, maximum, minimum and standard deviation of color 
 difference values calculated between spectral reflectances and their 

 mean spectra in individual races. See text for abbreviations. 
 

 

Table 3-11.  Results of mean, maximum and minimum color difference  
values calculated from each pair of skin spectral reflectances of each 

 subject within individual races. See text for abbreviations. 
 
Spectral reflectances of skin measured from remote-type of this research and contact-

type of the Oulu data show very similar statistical characterizations though there are 

some differences in absolute values  due to different measurement geometries and 

selection of measurement location involved. Considering the colors of facial skin, the 

deviations are very large either in the same race or the same subject with different facial 

parts.  

 

mean E Max Min Std
PA 5.07 12.33 1.03 2.55
C 6.48 17.48 1.15 3.31
B 6.99 18.81 1.03 4.03

SA 5.97 27.98 0.67 4.33
H 5.22 15.55 1.03 3.40

OuluPA 2.98 7.54 0.65 1.64
Oulu B 5.70 15.87 0.24 3.86
Oulu C 3.48 11.98 0.60 1.94

Mean E Max Min
PA 6.25 17.66 0.32
C 7.05 19.59 1.56
B 8.09 27.04 0.83

SA 7.95 30.4 0.65
H 6.73 11.94 1.56

OuluPA 3.96 8.07 0.61
Oulu B 3.13 7.53 0.87
Oulu C 3.34 12.52 0.41
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The results of color and spectral reproduction using different sets of basis functions 

discussed above may suggest that an universal set of basis functions of human facial 

spectral reflectances of various ethnic races is possible, especially for the spectra of 

human facial skin.  

Those results will provide us practical suggestion for imaging or spectral imaging 

system design, especially imaging system for human portraiture. It may also have 

potential application to designing digital camera  system, i.e., optimizing the selection of 

spectral sensitivities of digital camera to provide best color reproduction of human face 

images. Based on our results it may help us to choose optimized sets of inks to print 

images of human faces with better color and spectral reproduction.  It may also provide 

some practical data for the cosmetic industry. 

3.5 Estimating Spectral Image 
 

Figure 3-17. Flow chart of estimating the tristimulus values from camera signals 
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The flow chart of a typical method to estimate the tristimulus values from camera signals 

is shown in Fig. 3-17. Details of the procedures are given in the following sections. 

3.5.1 Linearization and White Correction 

As mentioned in Chapter 2, to connect camera digits to the tristimulus values,  the digits 

should be first linearized based on the optoelectronic conversion function.  The method of 

one-dimensional  look-up  table  involving  interpolation  was  employed  in this research.   

We first transferred the original images, both without and with filter, to the 

reflectance factor space, pixel by pixel, based on the OECF. White correction was then 

required to be performed due to non-uniform illumination fallen on the subjects. 

Compared to the depth dimensions of the subjects, the distance from subject to the 

camera could be regarded as an infinity. Therefore, it was reasonable to assume here that 

the subjects could be treated as flat objects. Thus, normal flat field procedure could be 

applied. The equation for white correction is given in Eq. 3-1. 

Imagewc=(Wmean – Dmean) ⋅ (Imagelin – Darklin)/(Whitelin – Darklin),          (3-1) 

where Imagelin is input linearized image, Imagewc is image after white correction, Whitelin 

and Darklin are linearized white image and dark image respectively, Wmean and Dmean are 

mean values of Whitelin and Darklin respectively. 

Then we truncated the pixels, which contributed to the spectral measurement, from 

the linearized image. The mean digital counts of those truncated pixels of red, green and 

blue channels were linearized R, G and B digital counts. For simple purpose, in the 

following sections we will use R, G and B notations to represent the linearized digital 

counts of red, green, and blue channel images, without using filter, respectively. The 
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linearized digital counts from images using filter will be represented as Rf, Gf and Bf 

corresponding to red , green and blue channels respectively. The linearized digital  counts 

were values within [0, 1]. The next step was to determine the transform matrix that could 

transfer the linearized digital counts to the eigvenvalues. Using the eigvenvalues and 

basis functions, the spectral reflectance could be constructed.  

3.5.2 Transform Matrix  

To transform linearized digital counts to tristimulus values, a transform matrix is 

required. Determining the transform matrix is an important procedure in whole spectral 

imaging system calibration. Since most digital cameras do not have spectral sensitivities 

that are linearly related to color-matching functions, a simple 3x3 transformation will 

yield considerable error. A  common empirical technique recommended by Berns62  is to 

include relative cumbersome square and covariance terms, or even higher order terms. 

The possible transform equation then could be written as in Eq. (3-2) 
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where R, G and B are linearized digital counts of camera, YX ˆ,ˆ and Ẑ are estimated 

tristimulus values , M is the transform matrix. The transform matrix M can be calculated 

from least square regression known as pseudoinverse method based on calibrated targets. 
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The author call this procedure as 2-step method that it first relates the digits to the 

tristimulus values using Eq. (3-2), then determine the eigenvalues using Eq. (1-21).  

However, least square regression of M only minimizes the sum of square tristimulus 

errors; it has no guarantee to either provide minimum color difference or most accurate 

spectral fit. Therefore, to achieve the best accuracy of the final results, some necessary 

optimization should be performed to minimize the goal object which is of most important 

or interest. For example, the M matrix can be determined with the minimum of maximum 

color difference or, in spectral image research, with the minimum root mean square error 

between  estimated and measured spectra.  It is worth noting that it works best to use 

different transform matrix for different sets of filters. 

 An alternative method is to establish the relationship between linearized digital 

counts and eigenvalues directly. This method is called a direct method. The form of digits 

chosen can be based on the Eqs. (1-21) and (3-2).  The accuracy of 2-step method and 

direct method depends on certain situations; no one always works better than the other. In 

the following we will only provide the results using direct method. For simple 

demonstration, we here define matrix D as follows: 

[ ]
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where, R, G, and B are linearized digital count matrices without filter,  I  is the unit 

matrix for offset. Similar expressions can be written for matrix Df as the case using filter. 

Therefore, D and Df  both contain 17 terms. We will use the expression Q=[D(n1:n2)] to 

represent the new matrix Q, a sub-matrix of D, containing column n1 to n2 of D. When 
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using three basis functions, two different digital count matrices were used to determine 

corresponding different transform matrices: 

7 terms:    Q = [D(1:6)   D(17)],    
                                            17 terms:     Q = D. 

When using 6 basis functions, due to noise issue involved in final spectral image 

reproduction, only low order of digital count matrix was considered. The new digital 

count matrix here had 7 terms as followings 

7 terms:   Q =[R   G   B   Rf   Gf   Bf   I], 

where Rf, Gf, and Bf are linearized digital count matrices with filter.  

After digital count matrices were determined, the corresponding transform matrices 

could be obtained using Eq. (3-4) and Eq. (3-5). 

a = Q⋅M,                                                       (3-4) 

M =(Q⋅QT)-1⋅QT⋅a,                                                 (3-5) 

where a was an n×p eigenvalue matrix  obtained from PCA method using p basis 

functions for whole n spectra, Q was an n×m matrix of linearized digital counts with m 

terms, and M was an m×3 transform matrix. Here, n is 544 for all spectral data sets. Once 

the transform matrix was determined, the digital counts in each pixel of the linearized 

image could then be transformed to eigenvalues using Eq. (3-4), hence, construct the 

spectral reflectance at this pixel by using Eq. (1-5). The spectral image, therefore, was 

obtained. 

As indicated in previous section, the least square regression using Eq. (3-2) may not 

give optimal spectral fit. Therefore, to determine the optimized transform matrix, we first, 
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in 2 step method,  applied Eq. (3-2) to obtain the least square result of transform matrix, 

M. Then using this M as an initial matrix, we performed optimization procedure to 

minimize the error of spectral estimation. The optimization criterion here is to minimize 

the root mean square of error between measured and estimated spectral reflectance. On 

the other hand, in direct method, the transform matrix is based on the spectra directly; 

matrix obtained from least square regression in direct method has already satisfied the 

minimizing of root mean square error between spectra, measured and estimated.  

3.5.3 Modeling Accuracy 

To demonstrate the spectral fit, the indices of metamerism were calculated using 

illuminations D50 and A. This calculation was employed Fairman’s [17] metameric 

correction using parameric decomposition. The results of color and spectral reproductions 

using different terms of transform matrices and different number of basis functions for all 

spectral reflectances measured are given in Table 3-12 where 3P7T and 3P17T represent 

the using of 3 basis functions with 7 terms (including covariance terms) and 17 terms 

(with higher order terms) of digital counts involved in calibration regression respectively 

and similar definition for 6P7T using 6 basis functions. It should be noted that six gray 

scale targets were added into the data sets to determine the transform matrices though the 

basis functions were still only based on spectral reflectances of the human faces. The 

reason to do this was to improve the color and spectral reproduction in gray scales while 

unchanging the quality of color and spectral reproduction for the face. 

The results in Table 3-12 indicate that three basis functions will provide acceptable 

color and spectral reproduction after the calibration. More terms involved in regression of 
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Method DeltEab Meta_Index RMS
3P7T 2.68 0.73 0.012
3P17T 2.32 0.66 0.011
6P7T 1.76 0.48 0.010  

Table 3-12. Results of color and spectral reproductions  
using different transform matrices in system calibration. 

 
transform matrices or more basis functions used will provide more accurate color and 

spectral reproduction.   We also had 16 trial sets of spectral data and corresponding 

camera digits measured from a subject that who’s data did not involve in system 

calibration. We would use these data for test purpose. Table 3-13 provides the modeling 

results for the  trial sets of data. 

Method DeltEab Meta_Index RMS
3P7T 2.01 0.49 0.013
3P17T 2.02 0.58 0.014
6P7T 1.58 0.43 0.012  

Table 3-13. Results of color and spectral reproductions for the trial sets of data 
using different transform matrices in system calibration. 

 
Table 3-13 shows that for these particular sets of data, when using 3 basis functions, 

more terms of transform matrix did not provide more accurate color or spectral 

reproduction though overall color and spectral reproduction did have been improved. 

However, it was still true that more basis functions using would improve the accuracy of 

color and spectral reproduction.  

To demonstrate the distribution of color differences in system calibration, histograms 

of color differences are shown in Figure 3-18. Histograms show that most color 

differences fallen around ∆Eab of 2, especially using higher order of terms or more basis 

functions. However, some color differences did fall away from acceptable range and are 
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more than 10 unit of ∆Eab. We will discuss more detail how to treat those large errors of 

reproduction in the image quality section. 
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Figure 3-18. Histograms of color differences in modeling. 

 (a) for 3P7T; ((b) for 3P17T; (c) for 6P7T. 
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To demonstrate the spectral match between the measured and reproduction, Fig. 3-19 

shows the measured and estimated spectral reflectances for 16 trial sets of data.  

 



 74

 
Figure 3-19. Spectral reflectances of measured and estimated for trial  
sets of data using 3 basis functions with 7 terms of transform matrix. 
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Once transform matrices were determined, the spectral reflectances could be 

estimated, pixel by pixel, from the original images, hence, obtained the spectral images. 

For display, the spectral reflectance of each pixel in those spectral images estimated was 

converted to CRT digits for display. 

3.5.4 Spectral Image Display 

Applying the transform matrices obtained above,  the spectral images, using either 3 or 6 

basis functions,  can be estimated, pixel by pixel, from the original R, G and B channel 

images. Each pixel of spectral image contains the eigenvalues which can be used to 

reconstruct the whole spectral reflectance, of this pixel, using Eq. (1-5).  Therefore, once 

the illuminant spectra and observer are given, the tristimulus values of each pixel can be 

determined. Applying some color models, those tristimulus values will be transferred to 

digital counts of display device, i. e., monitor, for display. More complete and complex 

models can be found in the book written by Fairchild 47. We selected  relatively simple 

color models and straightforward procedure to  achieve this. We will describe the 

procedure briefly as follows. All those transforms were processed pixel by pixel. When 

using 6 basis functions, the image registration procedure was required to be performed to 

two images obtained with and without using the filter before any transform could be 

performed. 

We assumed that subject was illuminated by illuminant D50 and the observer was 

1931 standard observer. We also assumed that the display had a white point equal to the 

chromaticities of illuminant D65.  The display environment had illumination close to 

D65.  Therefore, we first applied the Bradford[21] chromatic adaptation transform to 
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transfer the tristimulus values from illuminant D50 to illuminant D65. Then we used the 

sRGB66 model to convert the tristimulus values, in illuminant D65, to display R, G and B 

values. Finally, we applied CRT characterization model 67 to transform the R, G and B 

values to digital counts which are values of 0~255. Those digital counts are final, 

reconstructed image values for display. Some mapping process may need to keep the 

transferred values within the device profiles. For more accurate display of reconstructed 

spectral image, the CRT need to be calibrated based on its colorimetric characterization.68 

Detail procedure and mathematical equations will be given in Appendix A. By making a 

comparison between images displayed and real objects, we found the results as follows: 

(1). When using three basis functions, the transform matrix with 17 terms was more 

flexible and would provide more accurate color reproduction than low order transform 

matrix did, especially the highlight in the eyes, dark background and hairs. The matrix 

also predicted the colors in details very well. Moreover, the matrix could also interpolate 

colors of other materials, such as glasses, clothes, very well though no such spectra 

involved in system modeling. It was not obviously that the transform matrix with 17 

terms, would yield little bit color shift, to blue, in the highlight of eyes.  Meanwhile, 

transform matrix with 7 terms could not extrapolate colors very well; it failed to predict 

the highlight in the eyes. Compared to the reproduced image using transform matrix with 

17 terms, reproduced images with 7 term transform matrix were little bit blurred. 

Considering the image noise, it was shown, though not obviously, that higher order 

transform matrix would  yield little bit more image noise . This effect was also reported 

by Burns.9   
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(2) When using 6 basis functions, the displayed image showed, obviously, that there were 

more image noises involved, especially in the image using higher order transform matrix. 

Those image noises were mainly come from the original image using filter that caused 

relative low signal-noise ratio. This also implied that the image quality of the camera was 

not good enough for accurate multi-spectral image research. In addition, when using 6 

basis functions, the noise effect was very obviously impacted by high order transform 

matrices. However, it also showed that transform matrix with 7 terms could predict the 

color very well, either the highlight in the eyes, dark background, or color details in the 

face.  Some samples of original captured RGB images and their reconstructed spectral 

images for display are shown in the following figures. For simple notation, Fig. 1-20 to 

Fig. 1-24 will use the same arrangement as shown in the followings: 

Original image  
without filter 

Original image  
with filter 

Spectral image 3P7T 
for display 

Spectral image 3P17T 
for display 

Spectral image 6P7T 
for display 

3P7T Zoom-in image  
for noise detail 

3P17T Zoom-in image 
 for noise detail 

6P7T Zoom-in image  
for noise detail 

 
The samples of  original RGB images and corresponding estimated spectral images for 

display from a Pacific-Asian subject, a Caucasian, a Black, a Subcontinental-Asian and a 

Hispanic are shown in Fig. 1-20 to Fig. 1-24 respectively. Spectral images for display 

given in Fig. 1-20 to Fig. 1-24 show that, spectral images of 3P7T are little blurred and 

have small color shift. Spectral images of 6P7T  have more image noise. This is partly 

due to the fact that the camera we used had more noise, especially in blue channel image. 

Spectral images of 3P17T would be the best with more accurate color and spectral 
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reproduction compared to spectral images of 3P7T, and less image noise compared to 

spectral images of 6P7T. 

 

  

 

 

 

 

 

   
Figure 3-20. Original RGB images and estimated spectral images 

for display from a Pacific-Asian subject. 
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Figure 3-21. Original RGB images and estimated spectral images 

for display from a Caucasian subject. 
 

 

  

 

 

 

 

 

   
Figure 3-22. Original RGB images and estimated spectral images 

for display from a Black subject. 
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Figure 3-23. Original RGB images and estimated spectral images 

for display from a Subcontinental-Asian subject. 
 

 

  

 

 

 

 

 

   
Figure 3-24. Original RGB images and estimated spectral images 

for display from a Hispanic subject. 
 

To check the flexibility of the system calibration, the author took his own spectral 

image when wearing the glasses. The original images, with and without filter, and 

corresponding estimated spectral images using 3P7T, 3P17T and 6P7T  are shown in Fig. 

1-25. Fig. 1-25 proves that this imaging system was quite flexible and could interpolate 

or extrapolate the color of glasses and clothes very well. 
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Figure 3-25. Original RGB images and estimated spectral images 

for display from author wearing glasses. 
 

3.5.5 Noise Discussion 

Image noise is an main issue that impacts the final image quality of the spectral images. 

At this experiment, the main noise came from the thermal and electronic noise of the 

CCD camera. The lighting system made the signal-noise ratio in blue channel even worse. 

Due to the noise propagation in color transformation,9 more basis functions or more terms 

of transform matrices involved in spectral estimation will cause more noise in the final 

spectral images, hence impact the image quality. Therefore, one should balance between 

the color and spectral accuracy in system calibration and image quality of final spectral 

image  due to the existing of image noise and error involved in the  imaging system. We 
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will discuss more detail about the image quality of spectral imaging system in the image 

quality chapter. 

3.6 Summary 
A new procedure for capturing spectral image of human portraiture has been proposed. 

The facial spectral reflectances obtained were analyzed by PCA method. The PCA results 

indicate that three basis functions will provide quite accurate color and spectral 

reproduction for facial spectral reflectances from various races and different parts. Three 

band and six band spectral images of human portraits have been successfully obtained. 

High order transform matrices will provide more accurate, three-band,  spectral images 

with acceptable image noise. However, for six-band spectral images, transform matrix 

with low order of 7 terms will give most acceptable results. Due to the limit of image 

quality of the camera used, the 6-band spectral image did not meet the quality we 

originally expected. To obtain more accurate, multi-spectral image, a camera with high 

quality in terms of noise is required. The obtained spectral image can be applied to color-

imaging system design and analysis.   
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4 IMAGE QUALITY ANALYSIS OF SPECTRAL IMAGE 
In previous chapter we described the procedure to capture spectral images of human 

portraits. We also described different algorithms and transform matrices when estimating 

the spectral images. So far, all those considerations are based on the color or spectral 

accuracy at the stage of system calibration. Little has been discussed on the quality of 

final spectral images. However, a spectral image, early or later, needs to be finally 

displayed for people to see. Therefore, image quality has to be considered when 

designing a spectral imaging systems. In the following sections of this chapter we will 

investigate the image quality of spectral imaging system. The digital cameras and their 

responses to outside scenes were simulated based on real camera systems. A visual image 

quality experiment was performed to judge the image quality of spectral images with 

different distortions. Efforts were made to relate the results of visual experiment and 

objective measures of image quality and determine an image quality metric. Based on this 

image quality metric some further analysis of the spectral imaging system was performed. 

4.1 Simulation of Spectral Imaging System 
Computer simulation was applied to investigate the image quality of spectral imaging 

systems. The spectral imaging systems were simulated based on their real characteristics.  

Two real digital camera systems were applied to this research. One is the SONY DKC-

ST5 digital camera used in the previous experiment mentioned in chapter 2. Another one 

is IBM DCS Pro/3000 Digital Camera System69, 70 that researchers in MCSL applied for 

spectral imaging of artwork.71 The SONY DKC-ST5 camera system has been described 

in chapter 2. The IBM DCS Pro/3000 camera system is described here 
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(a) (b) 

 

 

 

 
(c) (d) 

Figure 4-1. IBM DCS Pro/3000 system (copied from Reference 71) .  
(a) copy stand and controller; (b) side lamps; (c) scanner head and column; 

 (d) PC and color monitor. (copied from reference 71) 
 
 
4.1.1 IBM DCS Pro/3000 Camera System 

The IBM DCS Pro/3000 is composed by copy stand, side lightings, scanner head, column 

and a controller that connected to a PC and a high resolution color monitor. The whole 

system is shown in Fig. 4-1.  
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The IBM DCS Pro/3000 provides 3072×4096 or 2048×3072 resolution pixels by a 

camera mounted on a variable height copy stand with both reflective and transmissive 

illumination. The CCD image sensor is mounted on a moving slide located inside the 

scanner head. A color filter wheel with 5 positions of dark, clear, red, green and blue is 

used to filter the incoming imaging light. With proper setting, it can produce raw color 

images with 12 bit for each red, green and blue channel. With 12 bit quantization, the 

IBM DCS Pro/3000 displays very good linear characteristics in OECF. Fig. 4-2 shows an 

example of the relationship between digital counts of gray patches and tristimulus 

intensity, Y, at red channel when using 12 bit quantization. 

 
Figure 4-2. Optoelectronic conversion curve for 12 bit quantization at red channel.71 

 

The IBM DCS uses four halogen light bulbs (Sylvania J688 ENH, 350W/120V, color 

temperature of 3,200K) as side lamps as shown in Fig. 4-1(b). The absolute spectral 

radiant power of the illuminant is shown in Fig. 4-3. 
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Figure 4-3. Absolute spectral radiant power of IBM DCS side lamps. 

 
The normalized spectral sensitivities of R, G, and B channels71 measured by double 

monochromator method are shown in Fig. 4-4. 
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Figure 4-4. Normalized spectral sensitivity of IBM DCS camera 

 
It should be noted here that the measured spectral data in Figs. 4-3 and 4-4 were 

provided as a courtesy by Dr. Imai.  The details of measurement can be found in the 
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reference 71.  According to the author’s personal discussion with Dr. Imai and data in the 

reference 62, the results of simulation and calibration were very well that the differences 

between the measured and simulated or calibrating-estimated agreed very small. It also 

indicated that a simple 3×3 transform matrix can convert digital counts to tristimulus 

values very accurately. Therefore, in the following several sub-sections we will mostly 

concentrate on describing simulation for digital camera DKS-ST5 in human facial 

spectral imaging. 

4.1.2 Simulation of Gray Scale Response 

To perform a better computer simulation for spectral imaging systems and based on the 

results we previously obtained, we applied some modifications into our image processing 

procedures. The first one was adding one more interpolation to obtain better linearization 

after original image had been done flatting field. The linearization was performed based 

on CECF curves. As described in section 3.2.3, the CECF was calculated without white 

correction since white correction, theoretically, can only be applied in the linear space. 

Therefore, there would produce some small difference between reflectance factors and 

linearized digits of gray scales which contributed to the CECF. To verify this, we 

performed linearization for this gray scale target, Kodak Gray Scale Q14, in the same 

center, 31×41 pixels, as in calculating CECF at section 3.2.3 and obtained the mean 

linearized digits which, by definition, should be the same values of reflectance factors. 

The reflectance factors of gray scale Q14 (adding a high quality white as in section 3.2.3) 

and the corresponding calculated mean linearized digits for RGB channels are given in 

table 4-1. In table 4-1, Ref. factors represent the reflectance factors, R_lin, G_lin, and 
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B_lin are linearized digits of corresponding gray scales in RGB channels respectively, 

ErrorR, ErrorG, and ErrorB are percentage errors between reflectance factors and 

corresponding linearized digits at RGB channel respectively. The mean percentage errors 

are 3.54%, 2.72% and 3.06% for RGB channels respectively. Table 4-1 indicates that 

there are very large errors when estimating the dark targets though the overall mean 

errors for whole gray scale range are within practical tolerances.  

 

Table 4-1. Linearized digits of Gray Scale Q14 and 
 corresponding percentage errors to the reflectance factors. 

 
The interpolation to improve the accuracy of gray scale linearization is based on a 

simple one-order linear regression as the form of y=a + b⋅x. The resulted interpolation 

equations after least square regression for RGB channels are shown in Eq. 4-1 to Eq. 4-3 

respectively. 

)14(,99919.000127.0int −⋅+= linRR  
)24(,00033.100055.0int −⋅+= linGG  

Ref. factors R_lin G_lin B_lin ErrorR (%) ErrorG (%) ErrorB (%)
0.9404 0.9401 0.9398 0.9393 0.03 0.06 0.09
0.8968 0.8940 0.8948 0.8919 0.31 0.22 0.24
0.6917 0.6914 0.6904 0.6903 0.04 0.18 0.15
0.5358 0.5371 0.5340 0.5357 0.24 0.34 0.26
0.4349 0.4358 0.4370 0.4415 0.21 0.48 1.31
0.3422 0.3395 0.3410 0.3398 0.81 0.36 0.10
0.2696 0.2692 0.2709 0.2751 0.13 0.51 2.18
0.2109 0.2107 0.2107 0.2089 0.13 0.12 0.83
0.1712 0.1691 0.1700 0.1698 1.24 0.67 0.41
0.1347 0.1333 0.1346 0.1330 1.05 0.13 0.27
0.1056 0.1043 0.1057 0.1051 1.19 0.10 0.76
0.0847 0.0837 0.0845 0.0834 1.16 0.24 0.32
0.0692 0.0677 0.0688 0.0677 2.08 0.58 0.09
0.0537 0.0529 0.0526 0.0520 1.49 2.07 1.65
0.0434 0.0420 0.0430 0.0406 3.33 0.87 3.31
0.0340 0.0330 0.0336 0.0318 2.76 1.01 3.71
0.0298 0.0279 0.0296 0.0286 6.52 0.59 2.65
0.0217 0.0203 0.0208 0.0199 6.37 4.11 2.07
0.0170 0.0151 0.0157 0.0153 11.12 8.07 0.81
0.0135 0.0117 0.0119 0.0135 13.80 12.06 15.69
0.0115 0.0092 0.0087 0.0101 20.35 24.25 9.45
Mean 3.54 2.72 2.21
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)34(,00010.100078.0int −⋅+= linBB  
 

where Rlin, Glin, and Blin are linearized digits for RGB channels respectively,  Rint, Gint, 

and Bint are corresponding interpolated digits in reflectance space for RGB channels 

respectively. The improved results of gray scale after applying Eq. 4-1 to 4-3 are shown 

in Table 4-2 where R_int, G_int and B_int are interpolated digits of corresponding gray 

scales in RGB channels respectively, ErrorRint, ErrorGint, and ErrorBint are percentage 

errors between reflectance factors and corresponding interpolated digits at RGB channel 

respectively.   

 

Table 4-2. .Interpolated digits of Gray Scale Q14 and 
 corresponding percentage errors to the reflectance factors. 

 
Compared to the results at Table 4-1, the results after interpolation in Table 4-2 have 

been improved significantly, especially for red and green channels. This improvement 

will impact the accuracy and image quality of final spectral images, especially for low 

Ref. factors R_int G_int B_int ErrorRint (%) ErrorGint (%) ErrorBint (%)
0.9404 0.9406 0.9407 0.9402 0.03 0.03 0.02
0.8968 0.8945 0.8956 0.8927 0.25 0.13 0.45
0.6917 0.6921 0.6912 0.6912 0.06 0.07 0.07
0.5358 0.5379 0.5347 0.5365 0.40 0.21 0.14
0.4349 0.4367 0.4377 0.4424 0.42 0.64 1.71
0.3422 0.3404 0.3417 0.3406 0.52 0.16 0.48
0.2696 0.2703 0.2716 0.2759 0.26 0.74 2.35
0.2109 0.2118 0.2113 0.2097 0.39 0.18 0.58
0.1712 0.1702 0.1707 0.1705 0.58 0.31 0.37
0.1347 0.1345 0.1352 0.1338 0.19 0.31 0.73
0.1056 0.1055 0.1063 0.1059 0.07 0.66 0.31
0.0847 0.0849 0.0851 0.0842 0.26 0.45 0.55
0.0692 0.0690 0.0693 0.0685 0.32 0.25 1.03
0.0537 0.0541 0.0531 0.0528 0.80 1.00 1.65
0.0434 0.0432 0.0436 0.0413 0.48 0.44 4.72
0.0340 0.0343 0.0342 0.0326 0.91 0.65 4.06
0.0298 0.0291 0.0302 0.0294 2.33 1.30 1.41
0.0217 0.0216 0.0214 0.0207 0.60 1.54 4.71
0.0170 0.0164 0.0162 0.0160 3.73 4.79 5.80
0.0135 0.0129 0.0125 0.0143 4.49 7.95 5.50
0.0115 0.0105 0.0093 0.0108 9.40 19.43 6.05
Mean 1.26 1.96 2.03
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spectral reflectance ranges. Simplicity, we will call these interpolated digits as the final 

linearized digits in the following sections. Consequently,  the camera spectral sensitivities 

and linearized RGB digits for  system calibration as mentioned in Chapter 3 are required 

to be recalculated by adding one more interpolation procedure. We call the whole 

procedure double linearization  procedure. The re-calculated spectral sensitivities of the 

DKC-ST5 camera are shown in Fig. 4-5. These results would be used for future computer 

simulation in the image quality research. Fig. 4-6 plots the re-calculated camera spectral 

sensitivities as shown in Fig 4-5 and the previously calculated results without using the 

second interpolation after flat fielding as shown in Fig. 3-7 together. Fig 4-6 indicates 

that the difference between the results using double interpolation and the results using 

conventional method is very small. The correlations between them are 0.999988, 

0.999995 and 0.999990 for RGB channels respectively. It should be emphasized here that 

the camera spectral sensitivities shown here are defined at the reflectance space. 
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Figure 4-5. Recalculated spectral sensitivities of  

DKC-ST5 Camera by using  double interpolation procedure 
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Figure 4-6. Spectral sensitivities of DKC-ST5 Camera by using and without using   

double interpolation procedure. The solid lines are for results using double 
 interpolation while the doted lines are for conventional method. 

 
The next step was to simulate the gray scale responses based on Eq. 2-1 to Eq. 2-4. 

For demonstration, we played the responses of perfect white first. The responses of 

perfect white were 0.2979, 0.3100 and 0.3500 for RGB channels respectively. The 

correct responses should be normalized based on the responses of  perfect white since the 

spectral sensitivities of the camera were normalized with relative meanings. An 

alternative way is to perform regression by using the spectral reflectances of gray scales 

to determine the normalized ratio or, using one-order linear regression, the coefficients. 

One-order linear regression method was chosen at the research. The results are given in 

Eq. 4-4 to Eq. 4-6. 

Rs = 8.1263E-5 + 3.3193⋅RD,                                               (4-4) 
Gs = 7.0744E-4 + 3.2128⋅GD,                                              (4-5) 
Bs = 5.1862E-4 + 2.8866⋅BD,                                               (4-6) 

 
where RD, GD, and BD are camera responses calculated from Eq. 2-4 for RGB channels 

respectively, Rs, Gs, and Bs are corresponding final simulated responses.  Rs, Gs, and Bs 
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have values at [0, 1]. In practice, clipping is required for simulated response less than 0 or 

larger than 1. In the following simulation, the camera responses for any spectra were 

determined by first using Eq. 2-4 then applying Eq. 4-4 to Eq. 4-6. The simulated results 

and corresponding percentage differences to the reflectance factors for gray scales are 

given in Table 4-3 where the first two gray scales are perfect white and high quality white 

paper, the last one is the perfect dark and the rest are Kodak Gray Scale Q14. For 

demonstration, the results in Table 4-3 were not clipped into [0, 1]. The results shows that 

the simulation for gray scales were quite successful.  

 

Table 4-3. The simulated results for gray scales 

4.1.3 Error Correction for Measured Data 

During the imaging experiment error could not be avoided. One of those errors could be 

due to the movement of the subjects during imaging and spectral measurement. 

Gray Scale # Ref. factors Rd Gd Bd Rs Gs Bs
1 1.0000 0.2979 0.3100 0.3500 0.9889 0.9967 1.0099
2 0.9404 0.2814 0.2924 0.3280 0.9342 0.9403 0.9462
3 0.8968 0.2702 0.2806 0.3118 0.8969 0.9021 0.8994
4 0.6917 0.2098 0.2144 0.2366 0.6966 0.6897 0.6826
5 0.5358 0.1625 0.1656 0.1839 0.5393 0.5328 0.5303
6 0.4349 0.1313 0.1346 0.1511 0.4359 0.4331 0.4356
7 0.3422 0.1035 0.1056 0.1185 0.3435 0.3401 0.3414
8 0.2696 0.0808 0.0835 0.0945 0.2683 0.2690 0.2723
9 0.2109 0.0636 0.0653 0.0735 0.2111 0.2104 0.2115

10 0.1712 0.0512 0.0530 0.0602 0.1701 0.1711 0.1732
11 0.1347 0.0408 0.0417 0.0467 0.1354 0.1347 0.1342
12 0.1056 0.0317 0.0325 0.0369 0.1054 0.1053 0.1059
13 0.0847 0.0255 0.0263 0.0295 0.0849 0.0851 0.0847
14 0.0692 0.0207 0.0213 0.0242 0.0688 0.0690 0.0693
15 0.0537 0.0159 0.0165 0.0190 0.0529 0.0538 0.0545
16 0.0434 0.0129 0.0135 0.0155 0.0428 0.0442 0.0443
17 0.0340 0.0101 0.0104 0.0120 0.0335 0.0343 0.0341
18 0.0298 0.0089 0.0093 0.0106 0.0296 0.0306 0.0300
19 0.0217 0.0064 0.0067 0.0077 0.0214 0.0223 0.0217
20 0.0170 0.0050 0.0052 0.0060 0.0168 0.0176 0.0169
21 0.0135 0.0040 0.0042 0.0048 0.0134 0.0141 0.0134
22 0.0115 0.0034 0.0036 0.0041 0.0114 0.0122 0.0114
23 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 -0.0005

Mean error (%) 0.74 1.20 0.70
Max error (%)    1.49 5.75 1.99
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Consequently, it may cause discrepancy between spectral measurement and 

corresponding RGB digits. An obvious evidence was the relatively larger errors for the 

reproduction of dark spectra in Chapter 3 and displayed relatively larger image noise in 

the dark area of the spectral image. Therefore, before simulation of the real face spectral 

reflectances and their corresponding camera responses, camera digits, some error and 

accuracy investigation to the whole measured data sets were necessary. Based on this 

investigation, some necessary procedures may need to be applied to improve the accuracy 

of simulation. 

The procedure of simulation of the camera responses of real face spectral reflectances 

is described as follows: 

1. Recalculate the 544 sets of final linearized digits of face targets which contributed 

the corresponding spectral measurements using double interpolation procedure as 

mentioned above. 

2. Simulate the camera responses of the 544 face spectral reflectances by applying the 

Eqs. 2-1 to 2-4 and Eqs. 4-4 to 4-6.  

3. To improve the gray scale response, 6 gray scale targets from Macbeth Color 

Checker were added into 544 sets of face data in simulation. 

It should be noted here that all those calculation and simulation involved imaging 

system with and without using filter. We then compared the percentage errors between 

the linearized digits from procedure 1 and simulated digits from procedure 2. The mean 

percentage error was very large with the value of 10.63%. The correlation between the 

calculated linearized digits and simulated digits was 0.9935. Table 4-4 gives the number 
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of targets that their percentage errors in simulation were above 5%, 10%, 20% for each 

RGB channels simultaneously. 

 

Table 4-4. Number of targets that their percentage errors in simulation 
were above 10%, 20%, and 30% for any RGB channels. 

 
Table 4-4 indicates that there were 20%, 13% and 6% data sets that had percentage 

errors above 5%, 10% and 20% for all RGB channels simultaneously in simulation 

respectively. This could be due to the experimental errors during imaging and spectral 

measurement as mention previously. It could be also due to the inaccuracy in simulation 

itself.  Either case, it was necessary to investigate the errors in further detail. Therefore, 

we performed a kicking-away game for those data sets that their simulated results had 

large errors as indicated in Table 4-4. In kicking-away game, those data sets with 

simulated results in all channels having percentage errors above 5%, 10%, and 20% 

would be kicked out of the data sets. The percentage errors of the remaining data sets 

were then recalculated. The results are shown in Table 4-5. 

    percentage error for all channels
>5% >10% >20%

Mean errors (%) 3.21 5.63 8.00  
Table 4-5. The percentage errors of  

simulation for remain data sets after kicking-away game . 
 
Table 4-5 shows that after 109 data sets, that their simulated errors were above 5% for 

all channels simultaneously, kicked away the percentage errors in simulation for the 

remained 441 data sets were improved significantly. Therefore, 5% criterion was selected 

    percentage error for all channels
>5% >10% >20%

Number of targets 109 71 31
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to kick away some bad data sets in the following simulation except for specific cases. 

Before leaving this issue, we will provide some details of the kicked-away data sets. 

Table 4-6 gives the mean linearized digit values of kicked-away data sets for different 

criteria. Table 4-6 indicates that the kicked-away data sets are, on average, the dark 

samples. This may be due to fact that during the imaging and spectral measurement, it 

took more integration time for spectroradiometer PR-704 to measure the dark spectra. 

Therefore, there would be more risk of subjects moving their faces. Consequently, those 

spectral measurements would not be consistent with the imaging signals, hence large 

error in calibration as well as in simulation. 

    percentage error for all channels
Percentage error (%) >5% >10% >20%

Mean 0.083 0.077 0.067  
Table 4-6. Mean linearized digit values of the kicked-away data sets. 

4.1.4 Simulation of Face Spectral Reflectance Response  

After kicking-away the bad data sets, the simulation for spectral images was performed. 

As the same way performed in Chapter 3, the transfer matrices were required to be 

determined. We assumed that there were no errors involved in spectral measurements 

since the spectroradiometer always captured the spectral reflectances. Therefore, the basis 

functions didn’t change. For 3 and 6 basis functions, different terms of transfer matrices 

had been tested. We also recalculated the spectral images using double linearization 

procedure and new calibration based on data sets without kicked-away bad data sets just 

described.  The details are described in the following sub-sections. 
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4.1.4.1 Using 3 Basis Functions 

In addition to the 7 terms and 17 terms transfer matrices as described in Eqs. 3-3 to 3-5 in 

Chapter 3, 3 terms and 4 terms had also been tested. In 3 terms, only linearized R, G, and 

B digits with one-order were involved in regression; no high-order or cross terms were 

involved. In 4-terms, an offset term was added to 3 terms in regression. The mean color 

differences of calibration in simulation were given in Table 4-7.  

                             Color Difference
Method Mean Maximum Stdv
3P3T 0.97 4.68 0.69
3P4T 1.43 7.37 1.60
3P7T 1.24 6.39 0.74

3P17T 1.19 6.36 0.76  
Table 4-7. Color differences of calibration in simulation using 

 3 basis functions with different transform matrices.. 
 

Table 4-7 indicates that the 3P3T provided most accurate calibration in simulation. It 

is interesting to note that more terms used in transform matrices did not always provide 

more accurate color reproduction when the transform matrices were optimized in terms 

spectral matches. By comparing the reconstructed spectral images and displayed using 

those four different transfer matrices, 3P3T transfer matrix was selected for future 

application due to its best image results. To provide more experience of error correction 

described above, the color differences from calibration in simulation by using kicking-

away bad data sets in 10% and 20% error criteria are shown in Table 4-8 and Table 4-9 

respectively.  

Tables 4-7, 4-8 and 4-9 show that the simulated results using the good data sets based 

on 5% error criterion are the best, which is not surprising due to the fact that more bad  
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                             Color Difference
Method Mean Maximum Stdv
3P3T 1.10 4.71 0.78
3P4T 1.53 6.31 1.54
3P7T 1.33 6.46 0.74

3P17T 1.27 6.36 0.77  
Table 4-8. Color differences of calibration in simulation using  3 basis functions with  

different transform matrices, based on good data sets from 10% error criterion . 
 

                             Color Difference
Method Mean Maximum Stdv
3P3T 1.33 6.47 0.70
3P4T 1.55 5.99 1.51
3P7T 1.33 6.47 0.70

3P17T 1.27 6.36 0.74  
Table 4-9. Color differences of calibration in simulation using  3 basis functions with  

different transform matrices, based on good data sets from 20% error criterion . 
 

data sets were kicked away. It also indicates that there was no significant error difference 

using different data sets when high-order transfer matrix was employed. However, 

because of several modifications applied as described in previous sections, the transfer 

matrix with the simplest format of 3P3T could now provide the best results. This had 

significant practical meaning in terms of image quality for reconstructed spectral images. 

4.1.4.2 Using 6 Basis Functions 

When using 6 basis functions, four different terms of transfer matrices, 6P6T, 6P7T, 

6P13T and 6P27T, were tested. The different matrices of linearized digits applied to 

estimate these four transfer matrices are defined as following (using the same definitions 

in Eq. 3-3):  

                                        6 terms:   Q = [D(1:3)    Df(1:3)]    
   7 terms:    Q = [D(1:3)    Df(1:3)    I]    

                                     13 terms:    Q = [D(1:6)    Df(1:6)   I] 
                                     27 terms:    Q = [D(1:10)  D(14:16)   Df(1:10)   Df(14:16)   I] 
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The mean color differences of calibration in simulation are given in Table 4-10. 
 

                             Color Difference
Method Mean Maximum Stdv
6P6T 0.30 3.68 0.29
6P7T 0.25 3.86 0.27

6P13T 0.15 4.41 0.24
6P27T 0.15 4.42 0.24  

Table 4-10. Color differences of calibration in simulation using 
 6 basis functions with different transform matrices. 

 
Compared to case of 3 basis functions, the errors were significantly improved when 6 

basis functions were employed in spectral reconstruction. Due to the similar reason as in 

3 basis-functions case, 6P6T was selected for future application. As in the previous 

section for 3 basis functions, the mean color differences from calibration in simulation by 

using kicking-away bad data sets in 10% are shown in Table 4-11. 

                             Color Difference
Method Mean Maximum Stdv
6P6T 0.32 3.02 0.35
6P7T 0.25 3.59 0.30

6P13T 0.14 4.40 0.26
6P27T 0.15 4.41 0.26  

Table 4-11. Color differences of calibration in simulation using  6 basis functions with  
different transform matrices, based on good data sets from 10% error criterion . 

 
4.1.5 Recalibration for Spectral Imaging System  

We had improved the image processing algorithms and modified the data sets used for 

the system simulation. In this section we will recalibrate the spectral imaging system and 

deal with the impact of those modification to the system calibration as described in the 

Chapter 3. The remaining 441 data samples were involved in system calibration. The 

double linearization procedure was employed to calculate the final linearized digits. 
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Based on 3 and 6 basis functions, different transfer matrices were tested for spectral and 

color reproduction.  

4.1.5.1 Using 3 Basis Functions 

When using 3 basis functions, the same four different terms of transfer matrices as in sub-

section 4.1.4.1 were tested based on Eq. 3-3 to Eq. 3-5. The resulted mean color 

differences are shown in Table 4-12. 

                             Color Difference
Method Mean Maximum Stdv
3P3T 1.98 6.19 0.87
3P4T 2.68 14.07 2.77
3P7T 2.10 8.10 1.50

3P17T 1.75 6.36 1.05  
Table 4-12. Color differences of calibration for imaging system using 
 3 basis functions, 441 data sets, and with different transform matrices 

 
Compared to the Table 3-12, it shows that the accuracy of calibration had been 

significantly improved. This, on the other hand, proved that the kicking-away game was a 

good procedure to correct the measured data sets when some errors were involved. An 

interesting phenomenon is that 3P4T transfer matrix generated much larger color 

difference than that using 3P3T. It is important to emphasize here that the 3P3T transfer 

matrix would generate very large error, large beyond practical tolerances, if the original 

data sets were applied for calibration.  For comparison, the color accuracy of calibration 

for remaining data sets using other criteria of 10% and 20% are given in Table 4-13 and 

Table 4-14 respectively. Not surprisingly, the remaining data sets with error kicking-

away criteria of 10% and 20% generated larger color difference in calibration for color 

and spectral reproduction. 
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                             Color Difference
Method Mean Maximum Stdv
3P3T 2.14 5.51 0.99
3P4T 2.90 12.70 2.68
3P7T 2.23 6.99 1.41

3P17T 1.89 6.83 1.10  
Table 4-13. Color differences of calibration for imaging system using  3 basis functions, 

remained data sets using 10% criterion, and with different transform matrices 
 
 

                             Color Difference
Method Mean Maximum Stdv
3P3T 2.28 6.49 1.09
3P4T 3.06 12.21 2.70
3P7T 2.36 7.35 1.48

3P17T 2.00 6.96 1.19  
Table 4-14. Color differences of calibration for imaging system using  3 basis functions, 

remained data sets using 20% criterion, and with different transform matrices 
 

4.1.5.2 Using 6 Basis Functions 

As similar to the previous section, the imaging system was recalibrated based on the 

remaining 441 data sets and 6 basis functions. The resulting color differences for four 

different terms of transfer matrices are shown in Table 4-15. 

                             Color Difference
Method Mean Maximum Stdv
6P6T 1.61 7.44 1.10
6P7T 1.38 6.48 0.82

6P13T 1.16 6.37 0.78
6P27T 1.08 5.93 0.70  
Table 4-15. Color differences of calibration for imaging system using 
 6 basis functions, 441 data sets, and with different transform matrices 

 
Compared to Table 3-12, the accuracy of calibration here is significantly improved.  

To test further, spectral images were reconstructed by using these four different transfer 

matrices and they were displayed using sRGB model as mentioned in the Chapter 3. The 
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displayed images showed that the image quality had been improved, especially in the 

dark area.  It also showed that image quality of displayed images from using 6P6T and 

6P7T transfer matrices were almost the same. The displayed spectral images using high-

order transfer matrices of 6P13T and 6P27 showed relatively large noise. Displayed 

spectral images using 3 basis functions were also judged. Considering the accuracy of 

spectral reproduction and in terms of image quality, 6P6T transfer matrix was finally 

selected for spectral image reconstruction. Those reconstructed spectral images would be 

treated as the original objects of the spectral imaging system for computer simulation in 

the following image quality analysis.  

For comparison purpose, the color accuracy of system calibration using the remaining 

data sets with the 10% error criterion is given in Table 4-16. Not surprisingly, compared 

to the system calibration using 441 data sets, larger color differences were generated here. 

                             Color Difference
Method Mean Maximum Stdv
6P6T 1.71 6.95 1.18
6P7T 1.57 6.18 0.93

6P13T 1.27 6.64 0.87
6P27T 1.19 6.59 0.79  

Table 4-16. Color differences of calibration for imaging system using  6 basis functions, 
remained data sets using 10% criterion, and with different transform matrices 

 
The first three basis functions based on face spectra of all races have already shown 

in the Chapter 3. The 4th to 6th basis functions are shown in the Fig. 4-7.  The Fig. 4-7 

shows that the 4th to 6th basis functions vary more frequently over the wavelength range 

compared to that of the first three basis functions in Fig. 3-12. This suggests that the 4th 

to 6th basis functions will contribute more fine shape details in spectral reconstruction. 
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Figure 4-7. The 4th to 6th basis functions based on all spectral from all races 

 
4.1.6 Color Accuracy of PCA Method Using Different Wavelength Steps and 

Different Number of Basis Functions 

In simulation, spectral images were reconstructed using different wavelength steps and 

different number of basis functions. For the human face spectral imaging system, 3 and 6 

basis functions were employed. For IMB camera system, 3, 6 and 9 basis functions were 

applied. Wavelength steps of 2nm, 5nm, 10nm, 15nm and 20nm were selected for 

simulation. Since the wavelength steps were changed, the basis functions for 

corresponding spectra were required to be recalculated.  The accuracy of calibration in 

system simulation, therefore, was necessary to be reinvestigated.  

To apply PCA for the spectral data, the first step was to interpolate the measured 

spectral reflectances into 2nm, 5nm, 10nm, 15nm, and 20nm steps. The wavelength range 
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in this research was selected to be 400nm to 700nm. As recommended by researchers in 

MCSL, Vrhel’s72 spectral data set was selected for IBM DCS camera simulation.  Vrhel’s 

spectral data set contains 170 natural and man-made object spectra with the wavelength 

range from 390nm to 730nm in 2nm increments. We will discuss the PCA results for face 

spectral data and Vrhel’s data separately in the following sub-sections. The accuracy of 

PCA applications, and spectral reproduction by simulation using different wavelength 

steps and different basis functions will also be described in detail.  

4.1.6.1 PCA Results for Face Spectra 

PCA was applied to 544 data sets of face spectra with different wavelength steps. The 

results in Table 4-17 show the cumulative contribution percentages  of  the  first  one  to  

six  principal  components for  all 544 face spectral reflectances with different 

wavelength steps. The results in Table 4-17 indicate that the first three principal 

components will cover over 99.88% of the variance for all spectral data with each 

wavelength step used. For the same number of basis functions, the differences of 

cumulative contribution percentages using different wavelength steps are very small and 

have no practical meanings. Of course, mathematically, the smaller the wavelength steps 

used, the larger the cumulative contribution percentages when using the same number of 

basis functions. This may be due to the fact that small wavelength steps will make the 

spectra smoother and the dimensions of variation will be smaller, hence larger coverage 

when using the same number of basis function compared to that using larger wavelength 

steps. 
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Based on Eq. 2-5 and the basis functions obtained above for different wavelength 

steps, the spectral reflectances could be estimated. The results of color differences are 

shown in Table 4-18 where 3P and 6P represent using 3 and 6 basis functions 

respectively. Other results in terms of different races and different face parts are not 

shown here. 

                                  Number of basis functions                                      Number of basis functions      
Steps 1 2 3 4 5 6
2nm 97.89 99.57 99.89 99.97 99.99 99.99
5nm 97.89 99.56 99.89 99.97 99.99 99.99
10nm 97.88 99.56 99.89 99.97 99.99 99.99
15nm 97.87 99.56 99.88 99.97 99.98 99.99
20nm 97.86 99.56 99.88 99.97 99.98 99.99  

 Table 4-17. Cumulative contribution percentage of principal components calculated from 
spectra of all race with different wavelength steps. 

 

                                  Number of basis functions            Color Differences (3P)                                  Color Difference (6P)
Steps Mean Maximum Stdev Mean Maximum Stdev
2nm 1.10 4.95 1.06 0.14 1.64 0.13
5nm 1.12 5.06 1.08 0.14 1.73 0.14
10nm 1.15 5.24 1.13 0.16 1.95 0.15
15nm 1.17 5.36 1.16 0.18 2.26 0.17
20nm 1.22 5.64 1.21 0.20 2.36 0.18  

Table 4-18. Color differences of face spectral reproduction based on  
3 and 6 basis functions using different wavelength steps 

 
The results in Table 4-18 indicates that the color reproduction would be more 

accurate when smaller wavelength steps are used. The results also show that there are no 

significant color differences in spectral reproduction when using different wavelength 

steps. It should be emphasized here that the above results were calculated between the 

measured spectra and their corresponding estimation with the same wavelength steps. 

Since the original spectra were measured with 2nm step it is practically required to 
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compare the colors of the estimated spectra with different wavelength steps to the 

original spectra obtained using the 2nm step. The results are shown in Table 4-19. The 

results in Table 4-19 indicates that, using 3 basis functions, different wavelength steps 

caused significant color difference for color and spectral reproduction except for that 

using 20nm increments. When using 6 basis function, large wavelength steps, 15nm and 

20nm, generated significant larger color difference compared to that using 2nm step. This 

may give us practical suggestion that large wavelength steps such as 15nm and 20nm 

should be avoided if possible. However, the impact on the final image quality is still 

needs to be further investigated. 

                                  Number of basis functions            Color Differences (3P)                                  Color Difference (6P)
Steps Mean Maximum Stdev Mean Maximum Stdev
5nm 1.12 5.06 1.08 0.14 1.71 0.13
10nm 1.15 5.24 1.13 0.16 1.96 0.15
15nm 1.19 5.30 1.14 0.31 2.35 0.17
20nm 1.45 5.66 1.10 0.61 1.88 0.26  

Table 4-19. Color differences between measured face spectra with 2nm step and  
estimated spectral based on 3 and 6 basis functions using different wavelength steps 

 

4.1.6.2 Simulation Results for Face Spectral Data  

After determining the basis functions of face spectra using different wavelength steps the 

camera responses for those spectra could then be simulated and the simulation of spectral 

reproduction could be performed as well. The detailed procedure is described as follows: 

1. Interpolate the spectral sensitivities of camera, spectral transmittance of filter, 

spectral power radiation of lighting and spectral reflectances of gray scale, Kodak Gray 

Scale Q14, into different wavelength steps as mentioned above based on 2nm step spectra. 
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2. Determine the coefficients of equations of the second linearization procedure, as 

shown in Eq. 4 to Eq. 6, for each wavelength steps. 

3. Calculate the 441 sets of final linearized digits of face targets which contributed the 

corresponding spectral reflectances for each wavelength steps based their own optimized 

equations. 

4. Determine the transfer matrices of 3P3T and 6P6T to convert the final linearized 

digits to eigenvalues for spectral data sets with different wavelength steps.    

5. Using the Eq. 2-5 to reconstruct the spectra and calculate the color difference for 

verification purpose. 

There were several ways to check the accuracy at color and spectral reproduction. 

The first one was to calculate the mean color differences between the simulated and 

measured 441 sets of face spectra that using the same wavelength steps. The results of 

color differences are given in the Table 4-20.  The results in Table 4-20 indicates that,  

                                  Number of basis functions            Color Differences (3P3T)          Color Difference (6P6T)
Steps Mean Maximum Stdev Mean Maximum Stdev
2nm 0.97 4.68 0.69 0.30 3.68 0.29
5nm 1.04 4.95 0.77 0.35 3.53 0.39
10nm 1.07 5.28 0.82 0.41 4.33 0.46
15nm 1.11 5.66 0.87 0.47 5.05 0.55
20nm 1.18 6.36 0.96 0.54 5.72 0.63  

Table 4-20. Color differences between the simulated and measured  
441 sets of face spectra that using the same wavelength steps. 

 
between the simulated and measured spectra using the same wavelength steps, there were 

no significant differences in accuracy of color reproduction when using 3P3T transfer 

matrices. However, when using 6P6T transfer matrices, the mean color difference 
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between the estimated and measured using 2nm step was significantly smaller than that 

using larger wavelength steps. 

The second way was to calculate the color differences between the 441 sets of 

simulated spectra, using different wavelength steps, and corresponding measured spectra 

with the wavelength step of 2nm. This way would give us a more accurate picture of the 

accuracy in simulation modeling since it demonstrated the errors caused by using larger 

wavelength steps other than 2nm. The results are shown in Table 4-21. 

                                  Number of basis functions            Color Differences (3P3T)          Color Difference (6P6T)
Steps Mean Maximum Stdev Mean Maximum Stdev
2nm 0.97 4.68 0.69 0.30 3.68 0.29
5nm 1.36 5.92 1.27 0.36 3.56 0.40
10nm 1.92 10.48 2.18 0.42 4.38 0.49
15nm 2.40 14.46 2.98 0.48 5.09 0.56
20nm 2.87 17.58 3.66 0.54 5.73 0.63  

Table 4-21. Color differences between the 441 measured face spectra using 2nm step and the 
corresponding simulated spectra using different wavelength steps. 

 
The results in the Table 4-21 show the different, but more precise, picture of the 

accuracy in simulation. The results indicate that, compared to the colors of the original 

measured spectra, the smaller the wavelength steps used the significantly more accurate 

the simulations would be, especially when using 3P3T transfer matrices. It should be 

noted that the color calculation was applied the normalization using the perfect white for 

each wavelength steps. Therefore, the colors of the perfect whites, using different 

wavelength steps, should be the same. An emphasis here is that those large color 

differences were also partly contributed from the inaccurate color matching functions and 

over-averaged in color integration when using large wavelength steps. In other words, 
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those large color differences, partly, only had mathematical meaning. It can be improved 

by interpolating either the measured spectra, if using large wavelength steps due to device 

limit, or simulated spectra into wavelength step of 2nm when computing the colors. 

However, just for the purpose of simulating the normal procedure of calculating the color 

using different wavelength steps, we did not try to perform any means of improvement 

for those color differences. Therefore, when the simulated spectral images were sent for 

display, these mathematical ‘errors’ would be transferred into practical meanings, hence 

image quality problems.  

The next step was to test the accuracy of color reproduction for all 550 sets of spectra, 

544 sets of face spectra and 6 gray scales. The Table 4-22 shows the results of color 

differences between 550 sets of spectra with wavelength step of 2nm and corresponding 

simulated spectra with different wavelength steps. Not surprisingly, the color differences 

of simulation for all spectra were larger than that in simulation modeling. 

                                  Number of basis functions            Color Differences (3P3T)          Color Difference (6P6T)
Steps Mean Maximum Stdev Mean Maximum Stdev
2nm 1.14 4.73 0.81 0.36 3.04 0.40
5nm 1.66 5.92 1.52 0.42 3.54 0.49
10nm 2.49 10.59 2.73 0.50 4.43 0.58
15nm 3.34 14.57 3.71 0.64 5.44 0.62
20nm 3.84 17.54 4.43 0.93 7.82 0.73  

Table 4-22. Color differences between all 550 sets of  measured spectra using 2nm step and 
the corresponding simulated spectra using different wavelength steps. 

 
Once the transfer matrices in simulation were determined, the spectral images could 

then be simulated. The original spectral images were estimated from the procedure 

described in the section 4.1.5.2 using 6P6T transfer matrix based on linearized digits and 
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corresponding spectra. This transfer matrix was different from the transfer matrix in 

simulation as described in this section. The original spectral images were then treated as 

the imaging objects for spectral imaging system simulation. The procedure is as follows: 

1. Interpolate the spectra of spectral imaging targets, spectral images created in 

section 4.1.5.2 using wavelength step of 2nm, into different wavelength steps, pixel by 

pixel. 

2. Calculate the camera responses of the spectral imaging targets with different 

wavelength steps, pixel by pixel. 

3. Convert the camera responses to eigenvalues based on either 3P3T or 6P6T 

simulation transfer matrices for different wavelength steps, pixel by pixel. 

4. Reconstruct the spectra with different wavelength steps based on 3 or 6 basis 

functions, pixel by pixel, hence getting the simulated spectral images that using different 

wavelength steps. 

Actually, in practice, the simulated spectral images were stored in the format of 

eigenvalues for each pixel.  

So far, we dealt with simulation of spectral imaging for human face using SONY 

DKC-ST5 digital camera. In the next two sections we will discuss the simulation of 

spectral imaging for IBM Pro\3000 digital camera. The procedure of simulation for 

spectral imaging system using IBM camera  was very similar to that for the face spectral 

imaging system using  SONY DKC-ST5 digital camera. The exception was that the 

second linearization procedure in simulation was not necessary for IBM camera since its 
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spectral sensitivities are very close to the color matching functions and the OECFs are 

well linearized.  

In the next two sections we will discuss the Vrhel’s spectral data in PCA and 

simulation of the spectral imaging system using IBM Pro\3000 digital camera.  

4.1.6.3 PCA Results for Vrhel’s Spectra 

The Vrhel’s spectral data are shown in the Fig. 4-8. 
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Figure 4-8. Vrhel’s spectral data 

As we did in the previous sections, PCA was applied to Vrhel’s spectral data with 

different wavelength steps. The cumulative contribution percentages  of  the  first  one  to  

nine  principal  components for  Vrhel’s spectra with different wavelength steps are given 

in the Table 4-23. The results in Table 4-23 indicate that the first six principal 

components cover over 99.5% of the variance for all spectral data with each wavelength 

steps used. For same number of basis functions, the differences of cumulative 
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contribution percentages using different wavelength steps are very small that have no 

practical meaning. 

                                                             Number of basis functions      
Steps 1 2 3 4 5 6 7 8 9
2nm 81.28 93.40 97.94 98.78 99.32 99.62 99.75 99.87 99.92
5nm 81.13 93.36 97.87 99.74 99.29 99.60 99.75 99.87 99.92

10nm 81.06 93.30 97.76 98.65 99.23 99.59 99.74 99.87 99.92
15nm 81.00 93.23 97.65 98.56 99.18 99.57 99.73 99.87 99.92
20nm 80.85 93.13 97.51 98.45 99.10 99.54 99.72 99.86 99.91  

Table 4-23. Cumulative contribution percentage of principal components calculated from 
spectra of all race with different wavelength steps. 

 
The first nine basis functions with wavelength step of 10nm are shown in the Fig. 4-9.  
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Figure 4-9. The first nine basis functions. (a) the first 3 basis functions;  

(b) the 4th to 6th basis functions; (c) the 7th to 9th basis functions. 

 
Based on those basis functions, the spectra could be estimated. Table 4-24 shown the 

results of color differences in spectral reproduction using 3, 6 and 8 basis functions 

respectively. These color differences were calculated for estimated and measured spectra 

with the same wavelength steps. 

                                  Number of basis functions           Color Diff. (3P3T)      Color Diff. (6P6T)   Color Diff. (9P9T) 
Steps MeanMaximumStdev MeanMaximumStdev MeanMaximumStdev
2nm 4.27 35.38 5.72 0.74 5.89 0.81 0.24 3.21 0.38
5nm 4.32 35.44 5.76 0.76 5.52 0.81 0.25 3.37 0.39
10nm 4.41 35.32 5.80 0.81 5.34 0.84 0.27 3.63 0.41
15nm 4.51 35.34 5.87 0.85 5.67 0.88 0.29 3.74 0.41
20nm 4.60 34.99 5.89 0.94 6.17 0.96 0.33 4.20 0.48  

Table 4-24. Color differences of  spectral reproduction for Vrhel’s spectra  
based on 3, 6, and 9 basis functions using different wavelength steps. 

 
The results in the Table 4-24 indicate that, for Vrhel’s spectra, in practice, at least 6 

basis functions are required for better color and spectral reproduction. For accurate 

evaluation, the color differences were also calculated between the original spectra with 

wavelength step of 2nm and the reproduced spectra using different wavelength steps. The 
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results are given in the Table 4-25. The results show that, when using 6 or 9 basis 

functions, there are no significant color differences when using small wavelength steps 

from 2nm to 10nm. However, there occur significantly larger color differences when 

large wavelength steps are used, especially when using 20nm step. 

                                  Number of basis functions           Color Diff. (3P3T)      Color Diff. (6P6T)   Color Diff. (9P9T) 
Steps MeanMaximumStdev MeanMaximumStdev MeanMaximumStdev
2nm 4.27 35.38 5.72 0.74 5.89 0.81 0.24 3.21 0.38
5nm 4.33 35.43 5.76 0.76 5.52 0.81 0.26 3.39 0.39
10nm 4.42 35.27 5.81 0.80 5.42 0.85 0.28 3.68 0.41
15nm 4.55 35.46 5.88 0.93 5.84 0.86 0.47 3.59 0.36
20nm 4.64 34.92 5.95 1.44 5.12 1.04 0.80 4.16 0.43  

Table 4-25. Color differences between original Vrhel’s spectra with 2nm step and  
 estimated spectra based on 3, 6, and 9 basis functions using different wavelength steps 

 
4.1.6.4 Simulation results for Vrhel’s spectral data  

After determined the basis functions of Vrhel’s spectra using different wavelength steps 

the camera responses for those spectra could then be simulated and the simulation of 

spectral reproduction could be performed as well. The detail procedure was almost the 

same as described in section 4.1.6.2. One difference was that a Kodak Wratten filter #66 

was applied as the second filter for using of 9 basis functions. The spectral transmittance 

of Kodak Wratten filter #66 is shown in the Fig. 4-10. Another difference was that there 

was no linearization procedure added since the OECFs of IBM Pro\3000, when using 12 

bits of  raw data, were linear and the spectral sensitivities were very close to the color 

matching functions. The color differences between the simulated and measured Vrhel’s 

spectral sets using the same wavelength steps are given in the Table 4-26. 
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Figure 4-10. Spectral transmittance of Kodak Wratten No. 66. 

 
                                  Number of basis functions           Color Diff. (3P3T)      Color Diff. (6P6T)   Color Diff. (9P9T) 
Steps MeanMaximumStdev MeanMaximumStdev MeanMaximumStdev
2nm 2.04 17.25 2.03 0.88 13.47 1.38 0.26 4.40 0.40
5nm 2.08 17.37 2.04 0.89 13.84 1.39 0.26 4.44 0.41
10nm 2.15 17.56 2.06 0.88 12.69 1.29 0.27 4.55 0.42
15nm 2.21 17.57 2.05 0.90 12.97 1.29 0.26 3.85 0.37
20nm 2.31 17.83 2.08 0.91 10.70 1.17 0.27 3.62 0.37  

Table 4-26. Color differences between the simulated and  
Measured  Vrhel’s spectra that using the same wavelength steps. 

 
The results in Table 4-26 indicates that, more basis functions used will provide more 

accurate simulation results; color accuracy was improved significantly when more basis 

functions were applied to reproduce the spectra in simulation . More accurate picture of 

the accuracy in simulation modeling is given in the Table 4-27 in which the color 

differences were calculated between the original Vrhel’s spectra, with wavelength step of 

2nm, and the corresponding simulated spectra using different wavelength steps. 
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                                  Number of basis functions           Color Diff. (3P3T)      Color Diff. (6P6T)   Color Diff. (9P9T) 
Steps MeanMaximumStdev MeanMaximumStdev MeanMaximumStdev
2nm 2.04 17.25 2.03 0.88 13.47 1.38 0.26 4.40 0.40
5nm 2.15 17.56 2.06 0.89 13.85 1.39 0.27 4.45 0.40
10nm 2.17 17.62 2.06 0.88 12.74 1.30 0.29 4.55 0.41
15nm 2.33 17.81 2.05 0.95 12.81 1.31 0.38 3.69 0.36
20nm 2.80 18.68 2.13 0.93 10.60 1.21 0.80 3.56 0.40  

Table 4-27. Color differences between  measured Vrhel’s spectra using 2nm step and the 
corresponding simulated spectra using different wavelength steps. 

 
The results in the Table 4-27 indicate that the simulation based on three basis 

functions will generate large color differences. Six basis functions will provide good 

color production in simulation while 9 basis functions will give very accurate results. 

Generally speaking, more color errors will be generated when larger wavelength steps are 

applied to reproduce the color and spectra in simulation. Macbeth Color Checkers were 

employed to test the accuracy of color and spectra reproduction using different transfer 

matrices for different wavelength steps in spectra. Table 4-28 gives the mean color 

differences between the measured spectra of Macbeth Color Checkers, with wavelength 

step of 2nm, and their corresponding simulated spectra using different wavelength steps. 

                                  Number of basis functions           Color Diff. (3P3T)      Color Diff. (6P6T)   Color Diff. (9P9T) 
Steps MeanMaximumStdev MeanMaximumStdev MeanMaximumStdev
2nm 3.33 8.17 2.53 1.66 4.97 1.14 0.44 1.56 0.39
5nm 3.37 8.29 2.55 1.68 4.75 1.12 0.44 1.39 0.36
10nm 3.44 8.45 2.56 1.68 5.45 1.17 0.42 1.12 0.34
15nm 3.68 8.72 2.51 1.80 4.82 1.11 0.52 1.05 0.28
20nm 3.76 9.49 2.67 1.47 6.52 1.45 0.69 1.21 0.30  
Table 4-28. Color differences between  measured  spectra of Macbeth Color Checkers using 

2nm step and the corresponding simulated spectra using different wavelength steps. 
 

The results in the Table 4-28 proves that more than 6 basis functions are required to 

perform good color and spectral reproduction for painting targets. One important note is 
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that the second filter, Kodak Wratten filter #66, was used singly, not attached with the 

first filter, 202 half C.T blue filter.  

Once the transfer matrices in simulation had been determined, the spectral images 

could then be simulated. The detail of procedure is the same as described in section 

4.1.6.2. The spectral imaging targets were spectral images provided in courtesy by 

researchers in Dr. Miyake’s Lab, Chiba University in Japan.  

4.1.7 Noise Simulation in Spectral Imaging System. 

Any imaging system will include noise, more or less. The noise could occur in the CCD 

camera due to thermal or electronic instability. It could also be due to the instability of 

the lighting power. Therefore, this research also performed simulation of imaging with 

noise for spectral imaging system. Uniformly distributed random noises with 3 different 

levels were added into imaging capturing stage in simulation.  They are zero noise, 1 

percent noise, and 2 percent noise. They were added into the system at the stage that 

camera integrated the responses for the imaging objects.  

4.2 Calibration for LCD Display 
Since the first experimental LCD (liquid crystal display) was made in 1968, LCD 

manufacturers have steadily developed ingenious variation and improvements on the 

technology, taking the LCD to amazing levels of technical complexity. LCDs are 

common because they offer some real advantages over other display technologies. They 

potentially offer greater luminance, higher contrast ratios, greater sharpness, better spatial 

uniformity and draw much less power than cathode ray tubes (CRTs).73, 74 Details of LCD 

theories and applications are beyond the scope of this research. We will concentrate on 
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LCD calibration based on its performance with respect to colorimetric characterization. 

The spectral images simulated in previous sections were displayed on an LCD for the 

visual experiments. Therefore, the colorimetric characterization of the display was 

required. We will also deal with its spatial resolution with respect to its modulation 

transfer function (MTF) when computing the image sharpness factors and color 

differences. The colorimetric characterization mainly followed the procedure proposed by 

Fairchild and Wyble’s research.74 The LCD MTF analysis was based on the theoretical 

method proposed by Barten.75  

A 22˝ Apple Cinema Display LCD (1600×1024 pixels, 86 pixels-per-inch) was 

selected as the viewing device for this experiment. The LCD was driven by an Apple 

Power Macintosh G4 system. In the following sections the spectral and color 

characteristics of this LCD display are described in detail. 

4.2.1 Device Characterization of LCD Display 

All the following measurements were performed in a darkened room usually used for 

visual experiments in MCSL. Before any measurement, all devices for measurement were 

properly warmed up. The color profile settings of the LCD display were set to maximum 

in brightness, target gamma of 1.8, target white point of 6500K with the device indicated 

chromaticity values(x, y values) of (0.64, 0.34), (0.30, 0.60) and (0.31, 0.33) for red, 

green, and blue primaries respectively.  A Photoresearch Spectrascan 704 (PR 704) 

spectroradiometer was applied for luminance measurements. With the distance of 80cm 

from the PR704 to the LCD screen, the luminance of white point was measured as 

112.2cd/m2 with the correlated color temperature (CCT) of 4478K. The measured CCT of 
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display white point differed significantly from the value device indicated for D65. The 

luminance of black point was measured as 0.5618cd/m2 with the CCT of 4422K.  

Colorimetric measurements were performed using an LMT C1210 colorimeter with 

viewing field of 1°. The colorimeter was placed as closed to the display screen as 

possible without contacting with it and was perpendicular to the screen. The 

measurement was taken place at a centered square color patch (500×500 pixels) 

generated in an IDL program. The surrounding of the patch on the screen was maintained 

to medium gray with RGB digital counts of 128 for each channel (luminance of 

27.11cd/m2 measured by PR704). 

     Measurement of CIE XYZ tristimulus values were performed for 17 gray patches 

(digital counts for each RGB channel were the same), 48 RGB ramp patches (digital 

counts for one channel while keeping digits to zero for other two channels) and 42 

random-digit-patches (called RND, digital counts for each channel were randomly 

assigned). Gray patches were created by assigning all RGB channels of the display to the 

same digital counts. Patches of RGB ramps were made by assigning digital counts only to 

one channel. Random-digit-patches were created by assigning the random digits to RGB 

channels. 

4.2.1.1 Spectral Characteristics 

The spectral radiance distributions of the display are given in Fig. 4-11. The spectral 

radiance in Fig. 4-11 was measured for white (digital count of 255 for all RGB channels) 

of the display. Fig. 4-12 gives the spectral radiance distributions of the RGB primaries of 

the display. 
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Figure 4-11. Spectral radiance of the display white. 
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Figure 4-12. Spectral radiance of the display RGB primaries. 
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4.2.1.2 Chromaticity Stability of Primaries 

If the chromaticity of the primaries of an LCD display varied with display level, then a 

simple 3× 3 matrix transform could not be used to convert RGB tristimulus values to CIE 

XYZ tristimulus values.74 Measurement of tristimulus values for RGB ramps described 

above was, therefore, performed to verify the chromaticity stability of the primaries. The 

measured tristimulus values were then converted to chromaticity coordinates and are 

plotted on the spectrum locus shown in Fig. 4-13. It is obvious from Fig. 4-13 that there 

did occur chromaticity shifting with display level. However, this chromaticity shifting 

might be from light leakage at the display black point. Thus, the measured tristimulus  

values of  RGB  ramps should  be corrected  by subtracting out the tristimulus 

 

Figure 4-13. Measured chromaticity coordinates of RGB ramps. 
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Figure 4-14. Measured chromaticity coordinates of RGB ramps after black correction. 

values of the black point. After black point correction, the chromaticity coordinates were 

recalculated. The new results are plotted in Fig. 4-14. It is clear from Fig. 4-14 that the 

primary stability of the display held very well except for the points in which the digital 

counts were 5 for each ramp. The small errors may be due to low signal-noise ratio of the 

colorimeter at dark display levels.  

4.2.1.3 Additivity 

The tristimulus values for the display white point, black point, and peak RGB 

primaries are given in Table 4-29. Based on Table 4-29, after black point correction, the 

additivity of the display could be verified by comparing the tristimulus values for the 

display white point with the summed tristimulus values of the peak RGB primaries. The 

results are given in Table 4-30. 
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               Digital Counts             Tristimulus Values
R G B X Y Z
0 0 0 0.281 0.298 0.227

255 0 0 34.07 18.50 0.56
0 255 0 21.02 43.03 4.32
0 0 255 8.41 8.12 40.82

255 255 255 63.01 69.12 45.29  
Table 4-29. Measured tristimulus values for display white, black, and peak RGB primaries. 

 

Value White R+G+B Difference (%)
X 62.73 62.66 0.11
Y 68.82 68.76 0.087
Z 45.06 45.02 0.089  

Table 4-30. Measured tristimulus values for display  
white point and the sum of peak RGB primaries. 

 
The results of less than 0.11% difference for each primary in Table 4-30 indicates that 

the display additivity held very well. Since the primaries were stable (except for at very 

dark display levels) and additive, a simple 3× 3 matrix transform, therefore, could  be 

employed to convert RGB tristimulus values to CIE XYZ tristimulus values. 

4.2.2 Characterization of LCD Display 

When displaying a spectral image on LCD screen, some transform models are required to 

transfer XYZ tristimulus values of spectral images to LCD RGB digital counts, all pixel 

by pixel applications, for display. Therefore, the LCD display is required to be well 

modeled, or calibrated. In the following subsections we will discuss the details of 

transform model of LCD display and its color accuracy. 
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4.2.2.1 Primary Transform Matrix  

The Matrix transform from RGB scalars (0~1)  to XYZ tristimulus values was derived 

from XYZ measurement of the peak primaries after black point correction. The transform 

and its inverse are given in Eqs 4-7 and 4-8. 
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4.2.2.2 Electro-optical Transfer Functions 
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Figure 4-15. Electro-optical transfer functions for RGB channels. 

 
The electro-optical transfer functions shown in Fig. 4-15 were the relationships between 

the RGB digital counts used and  their corresponding RGB scalars which representing the 

luminance produced by that digital counts. They were calculated from the measured 

tristimulus values of RGB ramps using Eq. (4-8) and their corresponding RGB digital 
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counts (normalized) for each RGB channel. As recommended in Fairchild and Wyble’s 

work,74 linear interpolations using three one-dimension lookup tables (LUTs) will 

perform better than equation fitting method, like GOG model,67 to describe the electro-

optical transfer function for LCD display.   Therefore, in this research, cubic-spline 

interpolation method was employed to interpolate the electro-optical transfer function 

based on three one-dimension LUTs.  

4.2.2.3 Calibration Accuracy and Optimization 

There were several paths of transforms in this research. One is so called forward path that 

LCD display RGB digital counts were transferred to XYZ tristimulus values using 

electro-optical conversion functions and Eq. 4-7. In this research, spectral images were 

first converted to XYZ tristimulus values, pixel by pixel. Then those XYZ values were 

transferred to XYZ tristimulus values, pixel by pixel, at LCD viewing condition using 

chromatic adaptation model. Finally, the adapted XYZ values were converted to LCD 

display RGB digital counts, pixel by pixel, for display based on electro-optical transfer 

functions and Eq. 4-8. When calculating the color differences for display images, LCD 

display RGB digital counts should be transferred back to XYZ tristimulus values at LCD 

viewing condition. The path that transferring from XYZ values to RGB digital counts, 

and then transferring RGB digital counts back to XYZ values, all at LCD viewing 

condition, is called loop path. Thus, the colorimetric accuracy of the transform model in 

both forward and loop paths were required to be investigated. It should be noted here that 

black correction was required for all tristimulus values involved in transform. However, 

when calculating the color accuracy of the calibration, the estimated and measured XYZ 
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tristimulus values were required to convert back to their display values by adding the 

XYZ values of the black point. The results of color accuracy for 48 ramps, 17 gray, 42 

RND and all 107 data sets are given in Tables 4-31 and 4-32 where Table 4-31 is for 

forward path and Table 4-32 is for loop path. 

                                  Number of basis functions                      DeltEab                    DeltE94
Samples Mean Maximum Stdev Mean Maximum Stdev
Ramps 0.26 1.30 37.00 0.16 0.79 0.21
Gray 0.14 0.28 0.10 0.12 0.24 0.09
RND 1.11 5.79 1.15 0.70 4.03 0.79

All Data 0.57 5.79 0.87 0.36 4.03 0.58  
Table 4-31. Color differences in LCD characterization for forward path. 

                                  Number of basis functions                      DeltEab                    DeltE94
Samples Mean Maximum Stdev Mean Maximum Stdev
Ramps 0.27 1.34 0.37 0.16 0.79 0.21
Gray 0.04 0.16 0.05 0.04 0.16 0.05
RND 0.30 1.22 0.23 0.18 1.11 0.19

All Data 0.25 1.34 0.30 0.15 1.11 0.19  
Table 4-32. Color differences in LCD characterization for loop path. 

The results in Tables 4-31 and 4-32 show that this LCD characterization was very 

successful in terms of color accuracy, especially in the loop path. However, there was 

still some space for improvement. As described in previous sections, due to the limit of 

measurement device and other possible reasons, the XYZ tristimulus values at black 

point may involve in some errors. Consequently, the transform using black point 

correction would generate some errors in color reproduction. Thus, an optimization 

procedure was performed. The objective of this optimization was to minimize the mean 

color difference for all 107 data sets at loop path by optimizing the XYZ tristimulus 

values at the black point and the transfer matrix in Eq. 4-17. The optimized XYZ values 
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for the black point was obtained as [0.278000,   0.294381,  0.224395]. The corresponding 

optimized transform equations are given in Eqs. 4-9 and 4-10. 
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The whole characterization procedure, including the electro-optical transfer functions, 

were then re-applied using the optimized results. The new electro-optical transfer 

functions were almost the same as that shown in Fig. 4-17 and are not displayed here. 

The color accuracy in LCD calibration was re-evaluated based on new electro-optical 

transfer functions and optimized transform equations, Eqs. 4-9 and 4-10. The results are 

given in Tables 4-33 and 4-34. 

                                  Number of basis functions                      DeltEab                    DeltE94
Samples Mean Maximum Stdev Mean Maximum Stdev
Ramps 0.14 1.64 0.24 0.09 0.71 0.11
Gray 0.09 0.32 0.07 0.08 0.32 0.07
RND 1.03 5.65 1.16 0.61 3.80 0.78

All Data 0.48 5.65 0.86 0.29 3.80 0.55  
Table 4-33. Color differences in LCD characterization for forward path after optimization. 

                                  Number of basis functions                      DeltEab                    DeltE94
Samples Mean Maximum Stdev Mean Maximum Stdev
Ramps 0.11 0.50 0.08 0.07 0.25 0.05
Gray 0.04 0.32 0.08 0.04 0.32 0.08
RND 0.21 0.66 0.02 0.13 0.59 0.14

All Data 0.14 0.66 0.14 0.09 0.59 0.10  
Table 4-34. Color differences in LCD characterization for loop path after optimization.. 
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The results in Table 4-34 show the color accuracy in loop path had been significantly 

improved. This accuracy in color characterization of the LCD display would provide 

sufficient confidence in success for accurately displaying the spectral images for the 

visual assessment experiment. 

4.2.3 Chromatic Adaptation Transform 

Before leaving the section of LCD calibration, we will discuss the chromatic adaptation 

transform applied in this research. As we described above, to display the spectral images 

on LCD display, the spectral images were first converted to XYZ tristimulus values using 

illuminant D65 and CIE 2° observer, pixel by pixel. Then the XYZ images were required 

to transfer to the XYZ values at LCD viewing condition for display. This was an issue of 

color reproduction in cross-media. As described in Chapter 2, chromatic-adaptation 

transform is required to apply when dealing with color reproduction in cross-media. The 

chromatic-adaptation transform applied in this research was based on Fairchild’s revision 

model of CIECAM97s.49 Also, the transform application was performed for each pixel of 

XYZ images that were converted from spectral images. 

Assuming the adapting field luminance (at D65 viewing condition) is 318.31cd/m2. 

The luminance of LCD white point was measured as 112.2cd/m2. Then the luminance 

values used for adaptation transform would be La1 = 0.2×318.31 cd/m2 and La2 = 0.2× 

112.2 cd/m2. The tristimulus values for both the sample and white were transformed to 

spectrally-sharpened cone responses using Eqs. 4-11 and 4-12 respectively. 
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where M is defined in Eq. 4-13. 
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A von Kries-type chromatic-adaptation transformation was applied to calculate 

corresponding colors. The equations are given in Eqs. 4-14 to 4-17. 

)144(,]1)/100([ 11111 −⋅−+⋅= RDRDR wc  
)154(,]1)/100([ 11111 −⋅−+⋅= GDGDG wc  
)164(,]1)/100([ 11111 −⋅−+⋅= BDBDB wc  

)174(],300/21/[ 2
1

4/1
1111 −+⋅+−= LaLaFFD  

where D1 is used to specify the degree of adaptation, F is factor of adaptation degree and 

was selected 1.0 for average surround in this research. Similar transformations were also 

made for the XYZ tristimulus values on LCD condition as given in Eqs. 4-18 to 4-23. 
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)204(,]1)/100([ 22222 −⋅−+⋅= RDRDR wc  
)214(,]1)/100([ 22222 −⋅−+⋅= GDGDG wc  
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)224(,]1)/100([ 22222 −⋅−+⋅= BDBDB wc  

)234(],300/21/[ 2
2

4/1
2222 −+⋅+−= LaLaFFD  

where F2 was selected as 0.9 for dim surround. Since the corresponding colors should be 

the same for the same samples, by combining Eqs. 4-14 to 4-16 and Eqs 4-20 to 4-22, we 

then have  

)244(,]1)/100(/[]1)/100([ 22211112 −−+⋅−+⋅⋅= DRDDRDRR ww  
)254(,]1)/100(/[]1)/100([ 22211112 −−+⋅−+⋅⋅= DGDDGDGG ww  
)264(.]1)/100(/[]1)/100([ 22211112 −−+⋅−+⋅⋅= DBDDBDBB ww  

The cone responses R2, G2, and B2 were then transferred back to XYZ tristimulus 

values at LCD viewing condition given in Eq. 4-27 where M-1 is matrix inverse of M. 

Those XYZ values could then be converted to LCD digital counts for display using LCD 

matrix transform model and electro-optical transfer function described in previous 

sections. 
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4.3 Visual Experiment for Image Quality 
To analyze the image quality of the spectral imaging systems simulated above, the 

simulated spectral images were used in the visual assessment experiment. Due to the time 

limit for people to participate in the visual assessment, the experiment were carefully 

designed.  
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4.3.1 Selection of Target Images 

Face spectral images were simulated using five wavelength steps, two different basis 

function sets and four levels of noise. Therefore, for one imaging object, there would be 

30 simulated spectral images when simultaneous variations were included (5 steps × 

2basis functions × 3 noise = 30). Including the original imaging object, there were total of 

31 images for image quality comparison. Two imaging objects were selected for quality 

experiment. They were one Caucasian and one Black. The Caucasian one was selected to 

represent the light-pigmented faces while  the Black one for the heavy-pigmented faces. 

Their images for display are shown in Fig. 4-16.  

    

Figure 4-16. Displayed images of two spectral imaging objects for face imaging system. 

For IBM DCS spectral imaging system, 45 spectral images would be simulated for 

one imaging object when simultaneous variations are included (5 steps × 3 basis function 

sets × 3 noise = 45). There was a total 46 images (including the imaging object) for image 

quality comparison for one imaging object. Two spectral imaging objects were selected 

for simulation. One was painting spectral image and another was spectral image of real 
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fruit scene. Their spectral images for display are shown in the Fig. 4-19. Total of 154 

different spectral images, therefore, would be used in the image quality assessment 

experiment.  

   

Figure 4-17. Displayed images of two spectral imaging objects for IBM DCS Camera. 

The size of the original spectral images for human portrait were 2048×2560. For 

visual experiment, the spectral images for display were resized to 512×640. The resizing 

procedure was performed at the last stage of processing after the spectral images had 

been converted to RGB images for LCD to display. The image sizes for fruit and painting 

images were 550x367. 

4.3.2 Visual Experiment Design 

An interface, written in IDL, was built to display the images and record the quality scores 

for the visual experiment. Fig. 4-18 shows the interface screen for visual experiment. 

Two images were displayed for observers to judge the image quality. The image on the 

left side was one of the four original spectral imaging objects for simulation and the right 

side was itself or a corresponding simulation using different wavelength steps, noise 

levels and basis functions. When displaying on the screen in experiment, both the order 

of four different original images on the left and the order of their corresponding 

reproductions on the right were randomly selected by the IDL interface program. Once 



 132 

the observer selected the quality score (by clicking the score button as shown in Fig. 4-18) 

for the image on the right side based on the original image on the left, a new pair of 

images would show up automatically. This procedure kept going until all image pairs 

were compared. The quality scores were recorded automatically. 

 

Figure 4-18. Interface for visual experiment. 

The viewing distance from the observer to LCD screen was selected as 60cm 

(23.644inch). With 86ppi for LCD resolution, the visual resolution on the observer’s eyes 

was  estimated as approximately 35.5 cycles per degree (cpd) using Eq. 4-28. In other 

words there were 41 digital samples per degree for visual angle. 

)284(,
)(tan180 1

−
⋅

=
−

d
ppicpd π   

where d is the viewing distance in inches.   
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4.3.3 Visual Experiment 

A total of 32 observers, 18 experts and 14 novices, participated in this visual assessment  

experiment. Each image was compared to its original and repeated three times with 

random order displayed for the observers. The following instruction was provided to the 

observers: 

“This is an image quality visual experiment. We will display two images each 
time. The image on the left side is the original image, the image on the right side 
is the reproduction or the original one. Your task is to assign an image quality 
score to the right side image based on its overall image quality compared to its 
original on the left side. The quality score definitions are given as the following: 

 5:  Excellent, no distortion is perceptible 
 4:  Good, distortion is perceptible, but not annoying 
 3:  Not good, not bad, slightly annoying 
 2:  Poor, Annoying 
 1:  Very poor, very annoying 
 0:  Bad 

You can also assign the score using the step of 0.5. 
Thank you for your help and enjoy the experiment.” 

The experiment was performed in the dark room. 
 
4.4 Comparative Image Quality Analysis 
The image quality subjective scores were collected from the image quality assessment 

experiment. In the following subsections we investigate the relationship between the 

objective and subjective image quality values. 
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4.4.1 Basic Analysis of Visual Experiment Data 

The MOS (mean opinion score) was computed from image quality scores from image 

quality visual assessment experiment using Eq. 4-29.  As provided in Eq. 4-29 the 

observers were asked to assign a score A(i,k) to each image displayed on the right side on 

the LCD screen, where A(i,k) was the score given by the ith observer to image k. For 

each reproduced image, the scores were average to obtain the MOS value for a specific 

image where n donates the number of reproduced images. 

)294(.),(1)(
1

−= ∑
=

n

i
kiAnkMOS  

The MOS values for four image sets are shown in Figs.4-19 to 4-22 .  In Fig. 4-19, 

the notation Original represents the original images of spectral imaging objects for 

simulation, 3P3T10nm1N represents the reproduced images using 3 eigenvectors and 3 

terms of transform matrix with wavelength step of 10nm and 1 percent noise. The rest of 

the notations in Figs 4-19 to 4-22 apply the similar definitions. 
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Figure 4-19. MOS for  fruit image sets. 
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Figure 4-20. MOS for painting image sets. 
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Figure 4-21. MOS for Caucasian image sets. 
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Figure 4-22. MOS for Black image sets. 
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Figs. 4-19 to 4-22 indicate that image quality, as we expected, did relate to the 

number of basis functions used in spectral imaging system using IBM camera when noise 

was involved.  Considering the Figs. 4-19 and 4-20, when using 3 channels, image 

quality was not significantly affected by the noise involved in capturing stage (within the 

noise levels used in this experiment). When using 6 and 9 channels, without noise, the 

image quality did improve a little bit, but not significantly.  However, with noise, the 

image quality dropped significantly; more channels used, more noise effect shown and 

poor image quality. This is consistent with  the   theoretical   noise   analysis  results  by  

Burns.9 It also shows that the noise effect was image dependent; the noise effect was 

more sensitive for fruit image sets than that for painting’s. This may be due to the fact 

that it is more difficult to perceive the noise effect when images show more complex 

scenes; high-frequency-contents in more complex images mask the noise effect. The 

wavelength steps did not play a significant role in image quality though small difference 

were still observable. An interesting thing was that the image qualities using 20nm step 

were a little bit better than that using 15nm step. The reason was unknown. For images of 

human portraits, the image quality, shown in Figs. 4-21 and 4-22, was in  the similar 

situations as  that of  using IBM camera.  However, portrait images  showed  more  

sensitivity  to  noise, either using 3 or 6 basis functions, compared to the same situations 

for painting and fruit image sets using IBM camera. This may be due to the fact that for 

human portraits, observers were more biased to judge the noise appearing on human faces 

compared to that of more complex scene images of painting and fruit. Again, the 

wavelength  steps  played  no  significant  rule  in  image  quality  though  it shows image  
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Figure 4-23. MOS for test images in terms of expert and normal observers. 

qualities using 15nm step were little bit better than that using 20nm step in most cases. 

We also found there were some drawbacks in experiment design. The main problem was 
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there were very a few test images fell into the quality ranges of 2~3 while too many test 

images fell into quality range over 4.0.  This may impact the quality metric analysis since 

the experiment data obtained here did not uniformly cover all quality range and the 

quality metric based on those data sets may be biased since quality scores at some range 

would have too much weighting on analysis. This is what we need to improve in future 

further research. To compare the differences of quality scores obtained from expert and 

normal observers, the MOSs are plotted in terms of expert and normal observers as 

shown in Fig. 4-23 where the left figures are from the experts and the right ones are from 

normal observers. Fig. 4-23 does not show significant different MOS values between 

expert and normal observers. The correlation between MOS values from the normal and 

expert observers is 0.9961. The MOS from the normal observers versus MOS from the 

expert observers is plotted in Fig. 4-24. Since the MOS values obtained from normal and 

expert observers are highly correlated, in the following sections we will not discuss MOS 

separately, in terms of normal and expert observers. 
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Figure 4-24. MOS from normal observers vs. MOS from expert observers. 
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4.4.2 MOS vs. Color Difference Factor 

The procedure to calculate the color differences for color images was described in section 

2.3.6. In this research an MTF of LCD display would be added after the filtered opponent 

channels before they were transformed back into CIE XYZ space as described in section 

2.3.6. The MTF was added to the luminance channel only. The MTF of the LCD display 

was derived  based on Barten’s76 method with some practical modification. The details 

can be found in Appendix C. The derived MTF is given in Eq. 4-30 

)304(,2.1
)2.1sin()( −⋅⋅

⋅⋅= fk
fkfMTF π

π  

where k is the pixel distance of LCD display in visual angle, f is the frequency. The MTF 

is plotted in Fig. 4-25. 
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Figure 4-25. MTF of LCD display. 

The color differences between original spectral imaging objects and their 

corresponding reproductions were then calculated and their mean values were obtained. 

The relationship between the MOS values and their corresponding mean color differences 

obtained above is shown in Fig. 4-26.  
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Figure 4-26. MOS vs. mean image color differences. (a) for painting images;  

(b) for fruit images; (c) for Caucasian images; (d) for Black images. 
 

The correlations between MOS values and mean color differences were 0.9876, 

0.9865, 0.9706 and 0.9762 with R2 values of 0.9754, 0.9732, 0.9420 and 0.9529 in linear 

regression for Figs. 4-26(a) to (d) respectively. They correlated very well. However, Fig. 

4-26 indicates that the relationship between MOS values and mean color differences is 

image dependent, which means the same MOS values will have different mean color 

differences for different images. This suggests that the image quality is not a single 

function of color difference. Figs. 4-26(a) and (b) show that color differences in fruit 

image sets were easier noticeable than that in even more complex images of painting. 

This is due to the mechanism of frequency filters in human visual system as described in 

the chapter 2. Fig. 4-26 also indicates that larger color differences are proportional to the 

lower image qualities.  
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4.4.3 MOS vs. Sharpness Factor 

The sharpness factors were calculated using Eqs. 2-26 and 2-27. Instead of using 

effective display luminance, L values here were calculated using luminance factors given 

in Eq. 2-28. 

L = 2⋅LLCD⋅Y/Ym ,                                                (4-28) 

where LLCD = 112.2cd/m2 is the luminance of LCD at white point, Y is mean Y 

tristimulus values of the image and Ym is the Y tristimulus value of the LCD of the white 

point. It should be remember that the XYZ tristimulus values were calculated at LCD 

viewing conditions.  

  The relationships between MOS values and sharpness factors are shown in Fig. 4-27. 

The sharpness  factors correlated with MOS values very well  with  correlations  of  0.946,  
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Figure 4-27. MOS vs. sharpness factor. (a) for painting images;  

(b) for fruit images; (c) for Caucasian images; (d) for Black images. 
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0.9486, 0.8495 and 0.9524 and R2 values of 0.8955, 0.8998, 0.7217 and 0.9071  in linear 

regression for Figs. 4-27(a) to (d) respectively. Except for the Caucasian images set, 

MOS values correlate with sharpness factor values quite well. The reason for Caucasian 

image set is unknown at this stage and it gives us space for further improvement in future 

research. As similar to the situation in Fig. 4-2, Fig. 4-27 indicates that the relationship 

between MOS values and sharpness factor values is image dependent, which means the 

same MOS values will have different sharpness factor values for different images. This 

suggests that the image quality is also not a single function of sharpness factor. Fig. 4-

27(a) indicates that the sharpness factor values for painting images fell over a very small 

range compared to other image sets. Fig. 4-27 also shows an interesting phenomenon that 

the larger sharpness factor values are corresponding to the lower image qualities at this 

research. 

4.4.4 MOS vs. Graininess Factor 

Fig. 4-28 shows the relationships between MOS values and graininess factor values for 

painting, fruit, Caucasian and Black image sets respectively. The correlations between 

MOS and graininess values for each image set are 0.9506, 0.9254, 0.9350 and 0.9349 

with R2 values of 0.9037, 0.8564, 0.8742, and 0.8741 in linear regression respectively. 

They correlate well. Fig. 4-28 indicates that high graininess value is corresponding to low 

image quality. It also shows that the relationship between MOS and graininess factor is 

image dependent, hence the image quality cannot be a single function of the graininess 

factor. 
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   Figure 4-28. MOS vs. graininess factor. (a) for painting images;  
(b) for fruit images; (c) for Caucasian images; (d) for Black images. 

 

4.4.5 MOS vs. Contrast Factor 

The relationship between MOS values and contrast factor values are shown in Fig. 4-29 

where we divided the SIPk values in Eq. 2-29 with 103. In the following calculation we 

will use this new SIPk factor. 
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Figure 4-29. MOS vs. contrast factor. (a) for painting images;  

(b) for fruit images; (c) for Caucasian images; (d) for Black images. 
 

The correlations between MOS values and contrast factor values are 0.988, 0.709, 

0.873 and 0.901 with R2 values of 0.977, 0.503, 0.763 and 0.812 in linear regression for 

Fig. 4-29. Fig. 4-29 indicates that the relationship between MOS and contrast factor is 

image dependent.  Figs. 4-29 (a) and (b) show the images with high contrast values 

display high quality. However, for human portraits, high contrast factor values will 

display low image quality. The reason is unknown and needs further investigation. Also, 

the correlations between MOS values and contrast factor values for fruit and Caucasian 

image sets were not high enough. Those are the issues for future improvement and further 

investigation. 

4.4.6 Image Quality Metric 

To bridge the gap between the physical measures and subjective visual perceptions of the 

image quality, we proposed to apply Miyahara’s44  objective PQS method. The PQS was 

calculated from the distortion factors by using the principal components analysis and 

multiple regression analysis (MRA) with the subjective MOS obtained above.  It is hoped 

that the obtained quality metric, PQS, would have very good correlation with the 

subjective measure, MOS.  
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4.4.6.1 Correlations Among the Distortion Factors 

The purpose of distortion factors defined in this research was to quantify specific types of 

impairment in images from spectral imaging systems. Obviously, some of the local image 

impairment will contribute to several or all distortion factors, and the distortion factors 

will be correlated. The covariance matrix of distortion factors is given in Table 4-35.  

DeltaEab Graininess Sharpness Contrast
DeltsEab 1.0000 0.9027 0.1182 0.1370

Graininess 0.9027 1.0000 0.2323 0.0119
Sharpness 0.1182 0.2323 1.0000 0.6456
Contrast 0.1370 0.0119 0.6456 1.0000  

Table 4-35. Covariance matrix of distortion factors. 

The covariance matrix indicates that color difference factor is high correlated with 

graininess factor. This is probably due to the fact that the graininess factor was defined as 

the mean RMS error of original and its reproduction images in the luminance channel 

which is closely related to the color difference. The correlations are low for the rest of the 

distortion factors.  

The PCA is a good tool to quantify these correlations among distortion factors. By 

performing the PCA to the four distortion factor data sets we computed in previous 

sections, the cumulative contribution percentages of  the  first  one  to  four  principal  

components were obtained and are given in Table 4-36. 

                                            Number of principal components
1 2 3 4

Cumulative percentage 99.08 99.91 100.00 100.00  
Table 4-36. Cumulative contribution percentage of principal  

components for distortion actors 
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The results in Table 4-36 indicate that the first three principal components would 

cover 100% of all variance of four distortion factors. The space spanned by the four 

distortion factors was essentially three-dimensional. This was consistent with the high 

correlation between color difference and graininess factors. It suggests that three properly 

defined distortion factors will describe the impairment of images with the same efficiency 

as using four distortion factors defined in this research. Furthermore, two proper defined 

distortion factors will be quite safe to describe most of the coverage of four factors used 

here since the first two principal components covered as high as 99.91% of the variance 

as shown in Table 4-35. This provides us some direction for future research.  

To investigate the importance of the four distortion factors in describing the image 

impairment the correlations between the distortion factors and their principal components 

were calculated. The results are given in Table 4-37. 

                                  Number of basis functions                        Principal components
Factors 1 2 3
DeltE 0.8327 0.8032 0.5358

Graininess 0.7602 0.6633 0.3774
Sharpness 0.3537 0.2892 0.4420
Contrast 0.2090 0.6997 0.6322  

Table 4-37. Correlations between distortion factors and their principal components. 

Table 4-37 indicates that the first principal component mostly reflected the coverage 

of color difference and graininess factors since it had high correlations with color 

difference and graininess factors. Since the first principal component covered most the 

variance of the distortion factors, it suggests that the color difference and graininess 

factors were the most important factors in this research. The correlation between the first 

principal component and the contrast factor was low that it suggested that the contrast 
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factor contributed very small amount of description in most image distortion. The second 

principal component still had high correlation with color difference factor. This further 

proves that the color difference factor was the most important factor in describing the 

image impairment in this research when using four distortion factors. The second 

principal component also correlated with graininess and contrast factors over 0.66. 

Loosely speaking, the order of importance from high to low for the four distortion factors 

is, color difference, graininess, sharpness and contrast. We will discuss this issue more 

detail later. 

4.4.6.2 Quality Metric PQS 

To obtain a numerical distortion measure, or an image quality metric PQS, a multiple 

regression analysis (MRA) between the principal components and the MOS values was 

performed. The first three principal components were employed in this task. The detail 

procedure is described below. 

First, we assumed that PQS could be described as a linear combination of principal 

components of distortion factors. Let Z1, Z2 and Z3 be the first three principal components. 

The PQS could then be given in Eq. 4-29. 

)294(,
3

1
−⋅=∑

=i
ii ZaPQS  

where ai are the coefficients that need to be determined using least square regression 

based on MOS values. The results are given in Eq. 4-30 where the correlation between 

PQS and MOS was 0.9237.  

)304(.106.8767.13352.39 321 −⋅−⋅+⋅= ZZZPQS  
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 The next step was based on Eq. 4-31 as given below 

)314(,
3

1
0 −⋅+= ∑

=i
ii ZbbPQS  

where b0 and bi are the coefficients that need to be determined by minimizing the RMS 

differences between PQS and MOS. The initial value for b0 was zero and bi were 

assigned the ai values given in Eq. (4-30). The reason to using two steps with Eqs. 4-29 

and 4-31 was to avoid the local minimum in MRA. If Eq. 4-30 was directly performed by 

assigning arbitrary initial values to b0 and bi, the MRA would not be successful due to the 

local minimum problem. The results for Eq. 4-31 are given in Eq. 4-32 with the new 

correlation value of 0.9226 between PQS and MOS.  

)324(.565.11617.18934.29480.5 321 −⋅−⋅+⋅−= ZZZPQS  

Note that the PQS, which was derived using principal components, could be also 

expressed in terms of the distortion factors. Let F1, F2, F3 and F4 be the distortion factors 

of color difference, graininess, sharpness and contrast respectively. Each principal 

component could be expressed as a linear combination of the distortion factors as given 

in Eq. 4-33.  

)334(,3,2,1,
4

1
−==∑

=

jFsZ i
i

jij  

where sji are coefficients for the jth principal component and need to be determined using 

least square regression. The results of sji are given in Table 4-38. The correlations 

between the principal components and their corresponding estimated values using Eq. 4-

33 were all 1.000. This is not surprising since the principal components were calculated 

from these four distortion factors. 
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                                  Number of basis functions                                                Sji
j i=1 (1E-2) i=2 (1E-3) i=3 (1E-4) i=4 (1E-3)
1 -0.0243 -0.2908 7.0926 -0.1784
2 -0.5818 0.5067 -5.0540 6.8303
3 1.3631 -21.7076 -17.9214 9.8683  

Table 4-38. Coefficients sji for Eq. 4-33. 

The next step was to perform the MRA for equation as given in Eq. 4-34. 

)344(,3,2,1,
4

1
0 −=⋅+= ∑

=

jFttZ i
i

jijj  

where tj0 and tji are coefficients that need to be determined by minimizing the RMS of the 

differences between principal components and their corresponding estimated values using 

Eq. 4-34. The initial values for tj0 were zeros. The initial values for tji were assigned the 

corresponding sji values as given in Table 4-38. The reason to play two steps using Eqs. 

4-33 and 4-34 was the same as procedures using Eqs. 4-29 and 4-31 to avoid the local 

minimum in MRA when directly using Eq. 4-34. The results of tji are given in Table 4-39. 

The coefficients of tji (I ≠ 0) and corresponding sji were almost the same at limited 

decimal points. The constant coefficients tj0 were of very small values.  

                                  Number of basis functions                                                           Tji
j i=0 (1E-8) i=1 (1E-2) i=2 (1E-3) i=3 (1E-4) i=4 (1E-3)
1 2.1512 -0.0243 -0.2908 7.0926 -0.1758
2 2.8455 -0.5818 -0.5067 -5.0540 6.8303
3 1.5125 1.3631 -19.9594 -17.9214 9.8683  

Table 4-39. Coefficients tji for Eq. 4-34. 

The final step was substituting the Eq. 4-34 into 4-32, hence obtaining the PQS 

expression in terms of distortion factors. The obtained PQS is given in Eq. 4-35. 

)354(.0183.00099.02503.02587.04797.5 4321 −+⋅+⋅+⋅−= FFFFPQS  
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The correlation between the PQS in Eq. 4-35 and the MOS was 0.9232 that was the 

same as the results in Eq. 4-32. This was because there was little error involved in the 

procedure through Eq. 4-32 to Eq. 4-35 due to the fact that principal components could 

be 100% expressed by the distortion factors. It should be noted that the contrast factor 

SIPk used here was divided by 103 to the SIPk defined in Eq. 2-28.  
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Figure 4-30. PQS versus MOS 
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(b) Fruit
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(d) Black
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(d) Caucasian
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Figure 4-31. PQS and MOS values for test images.  

The relationship between PQS and MOS is plotted in Fig. 4-30.  The PQS values for 

each test images are plotted Fig. 4-31 for four image sets.  For comparison, MOS values 
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are also plotted together. Compared PQS to MOS, the mean absolute error was 0.45 with 

the maximum of 2.5 occurred at 6P6T20nm2N of Caucasian image. Given that the 

subjective image quality scores of the test images had at most precision of 0.5, an average 

absolute error of 0.45 seems adequate. However, the maximum error of 2.5 was far 

beyond the tolerance. It was found that most of the large absolute errors (absolute error > 

1.0) occurred at using 6 and more than 6 channels with noise and large wavelength steps 

(especially 15nm and 20 nm steps) for painting, Caucasian and Black image sets. 

However, PQS predicted very well for fruit image sets in the similar situation. The reason 

is unknown at this stage. We also found that the large percentage errors occurred for the 

extreme low end of the image quality range, which may suggest the limitation of 

application using PQS for extreme low quality range.  

The PQS above was obtained from the principal components, initially. An alternative 

way was to compute the PQS directly from the distortion factors. To avoid any confusion, 

the PQS here will be expressed PQSd. The procedure is given as following. First, let the 

PQSd be the linear combination of the distortion factors using equation as given in Eq. 4-

36.  

)364(,
4

1
−⋅=∑

=
i

i
id FcPQS  

where ci are the coefficients that need to be determined using least square regression 

based on MOS values. The results are given in Eq. 4-37 where the correlation between 

PQSd and MOS was 0.9565. 

)374(.00029.00364.00482.01350.0 4321 −⋅+⋅+⋅−⋅−= FFFFPQSd  
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The next step was based on Eq. 4-38 as given below 

)384(,
4

1
0 −⋅+= ∑

=i
iid FddPQS  

where d0 and di are the coefficients that need to be determined by minimizing the RMS 

differences between PQSd and MOS. The initial value for d0 was zero and di were 

assigned the ci values given in Eq. (4-37). The reason to play two steps with Eqs. 4-36 

and 4-38 was the same as that in Eqs. 4-29 and 4-31 to avoid the local minimum in MRA 

if playing Eq. 4-38 directly. The final PQSd is given in Eq. 4-39. The correlation between 

the final PQSd and MOS was 0.9628. Compared to the correlation value of 0.9226 when 

using principal components method, conventional PQSd method,44, 77 the PQSd calculated 

directly from the distortion factors using Eqs. 4-37 and 4-38 got a better result.  

 )394(.0188.00237.01202.01354.00839.7 4321 −⋅+⋅−⋅−⋅−= FFFFPQSd  

The relationship between this new PQSd and MOS is plotted in Fig. 4-32. 
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Figure 4-32. PQSd versus MOS.  
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Figure 4-33. PQSd and MOS values for test images. 

 
The PQSd values are plotted in Fig. 4-33 for all four image sets.  For comparison, 

MOS values are also plotted together. Compared PQS to MOS, the mean absolute error 

was 0.35 with the maximum of 1.89 occurred at 9P9T15nm2N of fruit image. It is clear 

that PQSd was a better quality metric compared to PQS calculated from the principal 

components. The maximum error of 1.89 occurred at extreme low end of the image 

quality range. It was also found that most of the large errors occurred at the extreme low 

end of image quality range with large wavelength steps and noise, using more channels. 

This may suggest the limitation of application using PQSd for extreme low quality range.  

Mathematically, PQSd could be improved further by playing one order linear 

regression for whole PQSd to MOS. The result could then be defined as the new PQSd. 

The mean absolute error would drop to 0.35 with the maximum of 1.34 occurred at the 

same test image as that for the original PQSd. The result of regression is given in Eq. 4-40. 

)404(8235.06675.0 −⋅+= ddnew PQSPQS  
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4.4.6.3 Contribution of the Distortion Factors. 

                                  Number of basis functions                       PQS                            PQSd
Factors R mean |error| R mean |error|

1 0.9623* 0.35 0.9623* 0.35
2 0.8803 0.59 0.8803 0.59
3 0.1493 1.33 0.1493 1.33
4 0.1698 1.37 0.1698 1.37

1 2 0.9211* 0.45 0.9591 0.37
1 3 0.8815 0.57 0.9630 0.35
1 4 0.8169 0.80 0.9631* 0.34
2 3 0.6222 0.99 0.8821 0.57
2 4 0.5642 1.13 0.8918 0.52
3 4 0.3139 1.29 0.3792 1.20

1 2 3 0.9228 0.44 0.9589 0.37
1 2 4 0.9232* 0.45 0.9600 0.35
1 3 4 0.8884 0.56 0.9666* 0.33
2 3 4 0.6363 1.05 0.8928 0.50

1 2 3 4 0.9225 0.45 0.9628 0.35  
Table 4-40. Correlation coefficients between PQS and MOS, and PQSd and MOS. 

 
We now evaluate more detail about the importance of the distortion factors, taken singly 

and in different combinations. For all sets of combinations of distortion factors, the 

procedures of PCA and applications using Eqs. 4-29 to 4-39 were performed. The 

correlation coefficients and the mean absolute errors of the predictions from PQSs and 

PQSds are given in Table 4- 40. The results in Table 4-40 indicate that, using three 

distortion factors, the combination of color difference, graininess and contrast would 

provide the best prediction for image quality when applying PCA method. However, 

when playing regression directly to the distortion factors, combination of color difference, 

sharpness and contrast factors would obtain the best results. Since the PCA method 

considered the coverage of all data space of participated factors, the results obtained from 
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PCA method may have more feasibility for common application in other situations. On 

the other hand, PQSd was calculated directly from MRA based on distortion factors that it 

did not consider the dimensions of the data space. Therefore, PQSd may have limits to 

common application though it might have better results for specific data sets from 

regression.  Thus, we will concentrate on PQS while using PQSd as a comparison in our 

discussion. Back to the combinations of three distortion factors, the best combination 

would be color difference, graininess and contrast factors. The combinations of color 

difference, graininess and sharpness would also predict the image quality almost equally 

well. It is safe to say that the combination without color difference factor would not 

predict the image quality well, either using PQS or PQSd. When using two distortion 

factors, the combination of color difference and graininess would be the best choice while 

the combination of color difference and sharpness could be a good candidate.  The low 

correlation of MOS and PQS using the combination of color difference and contrast 

factors, on the other hand, proved that the PCA approach considered the space coverage 

of the factors involved, not just the fit for the best prediction as the PQSd’s. The PQSd 

could keep the color difference factor and remove the impact of other factors to reach the 

best fit. For single distortion factor, the color difference was the most important factor to 

predict the color image quality. The correlation of 0.9623 between MOS and the PQS 

based only on color difference shows the color difference itself could be a very good 

image quality metric. This was also the reason why PQSd could predict the image quality 

well when color difference factor was involved in any combinations of distortion factors.  

 



 158 

4.4.6.4 Limitations of PQS Applications 

The distortion factors applied in this research spanned three dimensions. Based on MRA 

statistical regression techniques, PQS could be reduced to one dimension factor which 

had a good correlation with image quality MOS. In the statistical regression, the 

contributions of the distortion factors could be positive or negative. If these contributions 

were outside the range of which the regression was carried out, the results of PQS may be 

invalid such as the situation for extreme low quality range. Thus, a meaningful PQS 

required meaningful contributions from the distortion factors. As suggested by 

Miyahara,44 for the PQS to be meaningful, one requirement is that the weighted 

contribution of each of the factors as given in Eq. 4-35 be in the range of one to five. The 

performance of PQS could be improved by perform the piecewise steps to get the best 

PQS for each range of the image quality. 

4.4.6.5 Empirical Image Quality Metric 

Mathematically, we could also perform the MRA for distortion factors without 

considering the their statistical characteristics to obtain an empirical image quality metric 

which had very high correlation to MOS. A multiple regression analysis (MRA) was 

carried out between MOS values and distortion factors to determine one single image 

quality metric. The result is given in Eq. 4-41, where Qm is the empirical quality metric. 

The correlation between MOS and Qm is 0.9770. The mean absolute error is as low as 

0.24. Fig. 4.34 shows the relationship between MOS and Qm. 

)414(.206.0008.0447.0174.0141.6 439.0
4

164.1
3

515.0
2

872.0
1 −⋅+⋅−⋅−⋅−= FFFFQm  
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Figure 4-34. MOS vs. Qm 

 
4.5 Summary 
An image quality investigation in visible spectral imaging was performed. Spectral 

images were simulated using different number of imaging channels, wavelength steps, 

and noise levels based on two practical spectral imaging systems. A mean opinion score 

(MOS) was determined from, rendered to a three-channel LCD display, subjective visual 

assessment scale experiment for image quality of spectral images. A set of partial image 

distortion measures, color difference for color images, graininess, sharpness and contrast, 

were defined based on possible classified and quantified actual distortions produced by 

spectral imaging systems. The MOS and distortion measures were highly correlated. The 

results indicate that the image quality of spectral imaging system was significantly 

affected by the number of channels used with noise in the image capturing stage. The 

selection of wavelength steps plays no significant effect on final image quality if noise is 

not involved. However, if noise is involved, the using of large wavelength increments, 
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such as 15nm and 20nm increments, will significantly impact the image quality of 

spectral images. The results also showed that the contrast factor plays different effect on 

image quality for human portraits compared to that on other complex-scene images.  

Principal components analysis was then carried out to quantify the correlation between 

distortion factors. A multiple regression analysis (MRA) was carried out between the 

principal component vectors and the measured MOS values to determine the picture 

quality scale (PQS). The obtained quality metric, PQS, has a good correlation to the 

subjective measure, MOS, with the correlation coefficient of 0.9225 and mean absolute 

error of 0.45. Statistical analysis further indicated that the single color difference factor 

itself could be a very good image quality metric. It also showed the combinations of color 

difference, graininess and either sharpness or contrast will be the best choice when using 

three factors to predict the image quality. When using two distortion factors, the 

combination of color difference and graininess would be the best choice. For better 

prediction of the experiment data, an alternative method is to perform the MRA directly 

using distortion factors to obtain PQSd. When using all four factors, the correlation 

between PQSd and MOS can be achieved as high as 0.9628 with mean absolute error of 

0.35.  Finally, an empirical model of image quality was also provided, independent of the 

scene contents. The correlation between MOS and the empirical image metric was 

0.9770. Those results showed that our visual image quality experiment for spectral 

imaging system was successful though some improvement needed to be performed in 

future research. 

 



 161 

5. CONTRIBUTIONS TO LIPPMANN2000 
This research contributed to spectral imaging data base, Lippmann2000, in several 

aspects. First, this research contributed a relatively complete spectral reflectance data 

base measured from human face with different races and from different face parts. Those 

spectral reflectances would provide the first hand data for researchers around the world in 

spectral imaging research, color and spectral reproduction for human face. This research 

also contributed some spectral images of human face. Second, this research contributed 

technique reports in the spectral imaging system for human portraits and image quality 

analysis in spectral imaging system. It provided a thorough statistical analysis for spectral 

characteristics of human face spectra. This provides practical suggestions for researchers 

in spectral imaging system design for human portraits. The reports in image quality 

analysis would help in researchers not only in spectral imaging system design, but also 

other image quality applications and analysis for color systems as well. The web site of 

Lippmann200 is http://www.cis.rit.edu/mcsl/online/lippmann2000.shtml. 
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6 CONCLUSIONS 
The purpose of this research was to design a spectral imaging system for human portraits 

and quantify properties and create meaningful image-quality metrics for spectral images.  

The experiment results showed that this research is successful. The conclusions will be 

provided separately in terms of spectral imaging and image quality. 

6.1 Conclusions in Spectral Imaging for Human Portraits 
This research proposed a new procedure for capturing spectral image of human 

portraiture. A spectral imaging system based on this procedure was designed and the 

spectral imaging experiment was performed. The facial spectral reflectances obtained 

were analyzed by PCA method. The PCA results indicated that three basis functions 

based on all races will provide accurate enough color and spectral reproduction for facial 

spectral reflectances from various races and different face parts. Three band and six band, 

visible range, spectral images of human portraits had been successfully obtained. High 

order transform matrices would provide more accurate, three-band,  spectral images with 

acceptable image noise. However, for six-band spectral images, transform matrix with 

low order of 7 terms would give most acceptable results. Due to the limit of image 

quality of the camera used, the 6-band spectral images did not meet the quality we 

originally expected. To obtain more accurate, multi-spectral image, it was suggested that 

a camera with high quality in terms of noise is required. The obtained spectral image can 

be applied to color-imaging system design and analysis.   
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6.2 Conclusion of Image Quality of Spectral Imaging System 
Image quality research for spectral imaging systems was performed. Spectral images 

were simulated using different number of basis functions, wavelength steps, and noise 

levels based on two practical spectral imaging systems, SONY DKC-ST5 digital camera 

in spectral imaging for human face and IBM Pro\3000 DCS digital camera in spectral 

imaging for complex scenes. A visual assessment experiment for image quality was 

designed and successfully performed. Mean opinion score (MOS) was obtained from this 

subjective visual assessment scale experiment for image quality of spectral images. A set 

of partial image distortion measures, color difference for color images, graininess, 

sharpness and contrast, were defined based on classified and quantified actual distortions 

produced by spectral imaging systems. The MOS and distortion measures were high 

correlated. The MOS results indicated that the image quality of spectral imaging system 

was significantly affected by the number of channels used with noise in the image 

capturing stage. The selection of wavelength steps played no significant impact on final 

spectral image quality within the limit in this research. The results also showed that the 

contrast factor played different impact on spectral image quality for human portraits 

compared to that on spectral images of complex-scene.  Principal components analysis 

indicated that these four distortion factors spanned three-dimensions. Image quality 

metric, PQS, was determined based on principal component vectors and MRA fitting to 

MOS. The obtained quality metric, PQS, as a function of distortion factors, had high 

correlation with the subjective measure, MOS. A modified PQS was also obtained based 

on playing MRA directly using distortion factors.  The importance of contributions in 
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image quality prediction from distortion factors was analyzed. The results showed that 

the single color difference factor itself could be a very good image quality metric.  

Finally, an empirical model of image quality was also provided. Those results showed 

that our visual image quality experiment for spectral imaging system was successful 

though some improvement needed to be performed in future research. 

6.3 Scientific Contributions 
The scientific contributions of this thesis research can be summarized as followings: 

• Design of spectral imaging system for human portraits using a new approach 

calibrating the imaging system and capturing the spectral imaging 

simultaneously. Spectral images of human portraits were obtained within the 

limit of imaging system. 

• Complete statistical analysis for spectral characteristics of the spectral 

reflectances in human face from various races and face parts. Finding the 

basis spectral functions for spectra of human face with more reliable range 

that can be applied at spectral imaging for human face from various races and 

face parts.  

• Creation of some specific simulation methods for simulating spectral images 

from spectral imaging system.  

• Proposed the application of PQS method in color image quality research for 

spectral imaging system. Defined distortion factors that describing the 

impairment of the spectral images from spectral imaging system.  
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• Quantifying properties and creating meaningful objective image quality 

metrics for spectral images. The objective quality metrics had high correlation 

to the subjective results.  Statistical analysis for the importance of 

contributions from those distortion factors in predicting image quality.  

6.4 Future Work 
There are several topic can be performed in future research. One is the optimization of 

the spectral imaging system for human portraits. This includes the optimization of the 

spectral sensitivities of the digital camera system and optimization in selection of filters 

for more than over 3 channel applications. Another topic is the optimizing the selection 

of printer ink at spectral image reproduction for human portraits. This can achieved by 

applying the basis functions obtained in this research to ink selection. An interesting topic 

can be the research in the image preference of spectral image using different illuminants 

and different illuminant geometries.  It can also apply the basis functions obtained in this 

research for illuminant estimation and pattern recognition. Future research should also be 

performed at the image quality analysis. One challenging topic is to define some image 

distortion factors with exactly the visual perception meanings and can cover all image 

quality issues and be valid for wide applications. The image quality metrics obtained 

from this research also need to be evaluated in other image quality experiments, either the 

quality metrics themselves or the procedures in analysis.  
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APPENDICES 

 
Appendix A: Fairman’s Metameric Correction Using Parameric 

Decomposition 
Measures of the degree of metamerism for a pair of stimuli are called indices of 

metamerism. In order to calculate an index of metamerism for a sample pair of stimuli, it 

is necessary that the pair exactly match in a reference viewing condition. Unfortunately, 

however, for most real samples, this limitation is not achieved. Therefore, Fairman78 

proposed metameric correction using parameric decomposition. The purpose is to correct 

the spectral distribution of one of the samples so that an exact tristimulus match is 

achieved for the reference condition.  The main procedure is to decompose both 

parameric pair of stimuli into their component fundamental stimuli and metameric blacks. 

Then the metameric black of one sample is added to the fundamental stimulus of the 

another. The corrected spectral distribution retains the differences in spectral distribution 

attributable to metamerism but has been corrected for any degree of mismatch that is 

attribute to simple color difference. The theory is based on Wyszecki’s79 hypothesis that 

any spectral stimulus can be decomposed into a fundamental stimulus (with tristimulus 

values equal to those of the stimulus) and a metameric black (with tristimulus values 

equal to zero). We will provide the main equations here. The details of deriving can be 

found in the reference.  
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Suppose matrix A is the weight set for tristimulus integration applicable to some 

illuminant-observer combination utilizing certain point spectrophotometry. Then a R 

matrix is defined as in Eq. 8-1: 

R = A⋅ (A΄⋅ A)-1⋅ A΄,                                                (8-1) 

where the prime symbol infers the transpose of matrix, and -1 infers the inverse of matrix. 

Let Ns and Nt be the spectral distributions of the two samples respectively. The corrected 

spectral distribution, Nc, is given in Eq. 8-1. 

                                                   Nc = R⋅ Ns + (I – R)⋅ Nt,                                             (8-1) 

where I is an identity matrix. The corrected distribution is now compared to the Ns 

distribution using conventional formulae for index of metamerism. 

 

Appendix B: Procedure for Spectral Image Display Using sRGB Model 
Suppose the spectral image was first taken in illuminant D50 and we have interest to 

compare its display on CRT that the display environment corresponds to complete 

chromatic adaptation with chromaticities equal to those of illuminant D50. The first step is 

to calculate the XYZ tristimulus values of the spectral image using illuminant D50, pixel 

by pixel. The following will follow the procedure described by Berns.62 The calculation 

is for pixel basis. 

The image tristimulus values should be transformed from illuminant D50 to 

illuminant D65.  The tristimulus values are first transformed to a set of cone responses, R, 

G, and R given in Eq. 8-3: 
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where Ym is the Y tristimulus value of  illuminant D50. Eq. 8-3 is also applied to 

illuminant D65 and illuminant D50 and get the RGB cone responses of (Rn, Gn, Bn) and 

(Rm, Gm, Bm) respectively. The next step is to perform so called Bradford chromatic 

adaptation transform. The corresponding colors are calculated using Eq. 8-4: 
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The corresponding colors are then transformed to CIE tristimulus values to complete 

the chromatic adaptation transform. The equation is given in Eq. 8-6: 
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  To display the image on CRT, the tristimulus obtained in Eq. 8-6 need to be transformed 

to display R, G, and B using sRGB66 model given in Eq. 8-7. 
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Finally, a GOG67 model that characterizing the CRT display attribution is applied to 

transform the display R, G, and B to CRT digital counts for display. A convention form 

of this transform for red channel is given in Eq. 8-8 where kg,r, g, and ko,r are coefficients 

that need to be determined from CRT calibration.   Similar expressions to Eq. 8-8 are used 

for the green and blue channels. 
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Appendix C: MTF of LCD Display 
LCD display is matrix addressed display. Fig. 8-1 shows the LCD pixel structure when 

displaying different colors on screen.  

   

          red              green           blue             white          yellow 

Figure A-1. LCD pixel structure under microscope. 

 
The resolution of LCD, such as MTF, is determined only by the number picture 

elements. The MTF of LCD describes the information transfer with respect to spatial 
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detail.81 However, it is difficult to express the resolution of LCD display in terms of a 

MTF, because the information is sampled by the discrete elements of the display.75 In the 

following we will derive the MTF of LCD based on Berten’s75 theory with some practice 

modification. 

 
Figure. A-2. Step response of the LCD display.  

a: row of series of dark pixel elements followed by a series of light pixel elements;  
b: signals that can cause this situation; c: displayed luminance transition;  
d: fixed unit-step signal; e: luminance response on this signal at various  
possible positions of the display element; f: average luminance response;  

g: line-spread function obtained by differentiating the average step response. 
 

It is well known that MTF is equal to the absolute value of the Fourier transform of 

the line-spread function. It is not difficult to prove that the line-spread function of a 
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system can be determined by differentiating the unit-step function. This method is called 

the knife-edge method. We first consider the horizontal resolution of green channel on 

LCD. Fig. 8-2 shows horizontal step response of a LCD. Fig. 8-1(a) shows the horizontal 

row of green pixel elements with pixel center-to-center distance k. The first pixel 

elements of this row are dark and the other are light green. The signal shown at (b) causes 

the response at (a). However, other signals can also cause the same situation as shown by 

dashed lines at (b). The displayed luminance transition is demonstrated at (c) neglecting 

the interruptions between the pixel elements. For a fixed unit-step signal as shown at (d) 

and various possible positions of the display elements with respect to the signal, the 

luminance response will correspond with the solid and dashed lines as shown at (e). The 

average luminance response over all these possible situations is given at (f).  By 

differentiating this average response with respect to x, the line-spread function is 

obtained shown at (g). This line-spread function has a block shape with a width k. The 

Fourier transfer of this line-spread is given in Eq. 8-9: 
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Thus, the MTF can be obtained as in Eq. 8-10: 
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The similar analysis for the red and blue pixel elements and the MTF are the same as 

in Eq. 8-10. For the RGB white response, the distance between the pixel elements of the 
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same color is the same k. In real LCD display, there is some “spreading” of the 

luminance displayed by the pixel elements and the shape of the pixel element is not 

exactly the box. Thus,  the MTF of the LCD will be impacted. Therefore, in this research, 

the k in Eq. 8-10 will be replaced with 1.2k. The final MTF used in this research is given 

in Eq. 8-11. 
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